0000000000234560

AUTHOR

Zaideth Sarabia

Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro

The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensit…

research product

Photobinding of Tiaprofenic Acid and Subprofen to Proteins and Cells: A Combined Study Using Radiolabeling, Antibodies and Laser Flash Photolysis of Model Bichromophores

Drug photoallergy is a matter of current concern. It involves the formation of drug-protein photoadducts (photoantigens) that may ultimately trigger an immunological response. Tyrosine residues appear to be key binding sites in proteins. The present work has investigated the photobinding of tiaprofenic and (TPA) and the closely related isomer suprofen (SUP) to proteins and cells by means of radioactive labeling and drug-directed antibodies. To ascertain whether preassociation with the protein may play a role in photoreactivity, two model bichromophoric compounds (TPA-Tyr and SUP-Tyr) have been prepared and studied by laser flash photolysis. The results of this work show that (a) TPA and SUP…

research product

Isolation of cross-coupling products in model studies on the photochemical modification of proteins by tiaprofenic acid

To gain insight into the chemical nature of drug-induced photoallergy, model studies have been carried out on the photochemical modification of proteins by tiaprofenic acid. Irradiation of decarboxylated tiaprofenic acid (DTPA) in the presence of p-cresol leads to C–C- and C–O-connected p-cresol “dimers”, together with DTPA hydrodimers. The p-cresol–DTPA cross-coupling product was not detected in this reaction. However, a product of this type is formed using a more hindered phenol, such as 2,6-di-tert-butylphenol. Similar results are obtained when tiaprofenic acid (TPA) or its methyl ester are used as photosensitizers. The observed formation of “dimers” can be related to protein photo-cross…

research product