0000000000234590

AUTHOR

Reinhild Kappelhoff

showing 2 related works from this author

Proteomic Analyses Reveal an Acidic Prime Side Specificity for the Astacin Metalloprotease Family Reflected by Physiological Substrates

2011

Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, me…

KeratinocytesModels MolecularProteomicsVascular Endothelial Growth Factor AProteasesmedicine.medical_treatmentProteolysisMolecular Sequence DataBiologyCleavage (embryo)BiochemistryCell LineSubstrate SpecificityAnalytical Chemistry03 medical and health sciencesTandem Mass SpectrometrymedicineHumansAmino Acid SequenceMolecular BiologyPeptide sequencePhylogeny030304 developmental biologyEnzyme Precursors0303 health sciencesProteaseStaining and LabelingEdman degradationmedicine.diagnostic_testResearch030302 biochemistry & molecular biologyTioproninMetalloendopeptidasesTerminal amine isotopic labeling of substratesRecombinant ProteinsKineticsBiochemistryProteolysisKallikreinsAstacinPeptidesSequence AlignmentChromatography LiquidMolecular & Cellular Proteomics
researchProduct

Proenzyme Structure and Activation of Astacin Metallopeptidase

2010

Proteolysis is regulated by inactive (latent) zymogens, with a prosegment preventing access of substrates to the active-site cleft of the enzyme. How latency is maintained often depends on the catalytic mechanism of the protease. For example, in several families of the metzincin metallopeptidases, a >cysteine switch> mechanism involves a conserved prosegment motif with a cysteine residue that coordinates the catalytic zinc ion. Another family of metzincins, the astacins, do not possess a cysteine switch, so latency is maintained by other means. We have solved the high resolution crystal structure of proastacin from the European crayfish, Astacus astacus. Its prosegment is the shortest struc…

MetallopeptidaseStereochemistrymedicine.medical_treatmentAmino Acid MotifsAstacoideaMatrix metalloproteinaseBiochemistryCatalysis03 medical and health sciencesStructure-Activity RelationshipHydrolasemedicineAnimalsMolecular Biology030304 developmental biology0303 health sciencesMetalloproteinaseEnzyme PrecursorsProteaseChemistry030302 biochemistry & molecular biologyMetalloendopeptidasesHydrogen BondingCell BiologyEnzyme structureProtein Structure TertiaryZincProtein Structure and FoldingAstacinCysteineJournal of Biological Chemistry
researchProduct