0000000000234616

AUTHOR

Gregory W. Schmidt

showing 2 related works from this author

Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I

2000

AbstractUltrafast dynamics of a reconstituted Lhca4 subunit from the peripheral LHCI-730 antenna of photosystem I of higher plants were probed by femtosecond absorption spectroscopy at 77 K. Intramonomeric energy transfer from chlorophyll (Chl) b to Chl a and energy equilibration between Chl a molecules observed on the subpicosecond time scale are largely similar to subpicosecond energy equilibration processes within LHCII monomers. However, a 5 ps equilibration process in Lhca4 involves unique low energy Chls in LHCI absorbing at 705 nm. These pigments localize the excitation both in the Lhca4 subunit and in LHCI-730 heterodimers. An additional 30–50 ps equilibration process involving red …

Time-resolved spectroscopyPhotosystem I0106 biological sciencesAbsorption spectroscopyPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiophysicsPhotochemistryPhotosystem I01 natural sciences7. Clean energyBiochemistryFluorescence spectroscopyLight-harvesting complexExcitation energy transfer03 medical and health scienceschemistry.chemical_compoundStructural BiologyUltrafast laser spectroscopyGeneticsMolecular BiologyPlant Proteins030304 developmental biology0303 health sciencesPhotosystem I Protein ComplexSpectrophotometry AtomicPigments BiologicalCell BiologyPlantsLHCI-730 heterodimerEnergy TransferchemistryAntennaChlorophyllPicosecondChlorophyll Binding ProteinsLight-harvesting complexTime-resolved spectroscopyDimerization010606 plant biology & botanyFEBS Letters
researchProduct

Ligand requirement for LHC I reconstitution

1998

Knowledge of the structure of photosynthetic light harvesting complexes is essential for understanding their function. Reconstitution of light harvesting complexes proved to be a very powerful tool for such structure analyses. In this way evidence was obtained for the central role of lutein and chlorophylls for LHCII structure (1) which was later confirmed by electron crystallographic analyses (2). Employing mutated, bacterial overexpressed LHCII apoproteins, amino acids could be identified which are involved in trimerization of LHCII and probably in binding of phosphatidylglycerol (3).

chemistry.chemical_classificationPhosphatidylglycerolLight-harvesting complexchemistry.chemical_compoundLuteinchemistryBiophysicsPhotosynthesisPhotosystem ILigand (biochemistry)Function (biology)Amino acid
researchProduct