0000000000234750

AUTHOR

Paul Hermann Lensing

File system scalability with highly decentralized metadata on independent storage devices

This paper discusses using hard drives that integrate a key-value interface and network access in the actual drive hardware (Kinetic storage platform) to supply file system functionality in a large scale environment. Taking advantage of higher-level functionality to handle metadata on the drives themselves, a serverless system architecture is proposed. Skipping path component traversal during the lookup operation is the key technique discussed in this paper to avoid performance degradation with highly decentralized metadata. Scalability implications are reviewed based on a fuse file system implementation. Peer Reviewed

research product

Direct lookup and hash-based metadata placement for local file systems

New challenges to file systems' metadata performance are imposed by the continuously growing number of files existing in file systems. The total amount of metadata can become too big to be cached, potentially leading to multiple storage device accesses for a single metadata lookup operation. This paper takes a look at the limitations of traditional file system designs and discusses an alternative metadata handling approach, using hash-based concepts already established for metadata and data placement in distributed storage systems. Furthermore, a POSIX compliant prototype implementation based on these concepts is introduced and benchmarked. A variety of file system metadata and data operati…

research product