The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors.
In order to study the intragenic profiles of active transcription, we determined the relative levels of active RNA polymerase II present at the 3'- and 5'-ends of 261 yeast genes by run-on. The results obtained indicate that the 3'/5' run-on ratio varies among the genes studied by over 12 log(2) units. This ratio seems to be an intrinsic characteristic of each transcriptional unit and does not significantly correlate with gene length, G + C content or level of expression. The correlation between the 3'/5' RNA polymerase II ratios measured by run-on and those obtained by chromatin immunoprecipitation is poor, although the genes encoding ribosomal proteins present exceptionally low ratios in …
Regulon-Specific Control of Transcription Elongation across the Yeast Genome
Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is medi…
Structural Characterization of Set1 RNA Recognition Motifs and their Role in Histone H3 Lysine 4 Methylation
Departament de Bioquimica iBiologia Molecular, Universitatde Valencia, C/Dr Moliner 50,46100, Burjassot, SpainThe yeast Set1 histone H3 lysine 4 (H3K4) methyltransferase contains, inaddition to its catalytic SET domain, a conserved RNA recognition motif(RRM1). We present here the crystal structure and the secondary structureassignment in solution of the Set1 RRM1. Although RRM1 has the expectedβαββαβ RRM-fold, it lacks the typical RNA-binding features of thesemodules. RRM1 is not able to bind RNA by itself in vitro, but a constructcombining RRM1 with a newly identified downstream RRM2 specificallybinds RNA. Invivo,H3K4 methylation isnot affectedbyapoint mutation inRRM2 that preserves Set1 s…
Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation
Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc…