0000000000234801

AUTHOR

Kohei Fujikura

showing 2 related works from this author

Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome

2020

Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by extensive local invasion and systemic spread. In this study, we employed a three-dimensional organoid model of human pancreatic cancer to characterize the molecular alterations critical for invasion. Time-lapse microscopy was used to observe invasion in organoids from 25 surgically resected human PDAC samples in collagen I. Subsequent lentiviral modification and small-molecule inhibitors were used to investigate the molecular programs underlying invasion in PDAC organoids. When cultured in collagen I, PDAC organoids exhibited two distinct, morphologically defined invasive phenotypes, mesenchymal an…

0301 basic medicineCancer Researchendocrine system diseasesPancreatic ductal adenocarcinoma (PDAC)RAC1CDC42AdenocarcinomaBiologyArticle03 medical and health sciences0302 clinical medicineHuman Pancreatic CancerCell MovementPancreatic cancerBiomarkers TumorTumor Cells CulturedmedicineOrganoidHumansNeoplasm InvasivenessCell ProliferationSmad4 ProteinRegulation of gene expressionCell growthMesenchymal stem cellPrognosismedicine.diseasePhenotypedigestive system diseasesGene Expression Regulation NeoplasticOrganoidsPancreatic NeoplasmsSurvival Rate030104 developmental biologyOncology030220 oncology & carcinogenesisembryonic structuresCancer researchCarcinoma Pancreatic DuctalSignal TransductionCancer Research
researchProduct

Microlensing constraints on axion stars including finite lens and source size effects

2021

A fraction of light scalar dark matter, especially axions, may organize into Bose-Einstein condensates, gravitationally bound clumps, "boson stars", and be present in large number in galactic halos today. We compute the expected number of gravitational microlensing events of clumps composed of the ordinary QCD axion and axion-like-particles and derive microlensing constraints from the EROS-2 survey and the Subaru Hyper Suprime-Cam observation. We perform a detailed lensing calculation, including the finite lens and source size effects in our analysis. We constrain the axion mass in terms of the fraction of dark matter collapsed into clumps, the individual clump densities, and the axion self…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicskosmologia01 natural sciences114 Physical sciencespimeä aineHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciences010306 general physicsAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review
researchProduct