0000000000235156

AUTHOR

Aiqun Huang

Universal monomer dynamics of a two dimensional semi-flexible chain

We present a unified scaling theory for the dynamics of monomers for dilute solutions of semiflexible polymers under good solvent conditions in the free draining limit. Our theory encompasses the well-known regimes of mean square displacements (MSDs) of stiff chains growing like t^{3/4} with time due to bending motions, and the Rouse-like regime t^{2 \nu / (1+ 2\nu)} where \nu is the Flory exponent describing the radius R of a swollen flexible coil. We identify how the prefactors of these laws scale with the persistence length l_p, and show that a crossover from stiff to flexible behavior occurs at a MSD of order l^2_p (at a time proportional to l^3_p). A second crossover (to diffusive moti…

research product

Conformations, Transverse Fluctuations and Crossover Dynamics of a Semi-Flexible Chain in Two Dimensions

We present a unified scaling description for the dynamics of monomers of a semiflexible chain under good solvent condition in the free draining limit. We consider both the cases where the contour length $L$ is comparable to the persistence length $\ell_p$ and the case $L\gg \ell_p$. Our theory captures the early time monomer dynamics of a stiff chain characterized by $t^{3/4}$ dependence for the mean square displacement(MSD) of the monomers, but predicts a first crossover to the Rouse regime of $t^{2\nu/{1+2\nu}}$ for $\tau_1 \sim \ell_p^3$, and a second crossover to the purely diffusive dynamics for the entire chain at $\tau_2 \sim L^{5/2}$. We confirm the predictions of this scaling descr…

research product

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles

The conformations of semiflexible polymers in two dimensions confined in a strip of width D are studied by computer simulations, investigating two different models for the mechanism by which chain stiffness is realized. One model (studied by molecular dynamics) is a bead-spring model in the continuum, where stiffness is controlled by a bond angle potential allowing for arbitrary bond angles. The other model (studied by Monte Carlo) is a self-avoiding walk chain on the square lattice, where only discrete bond angles (0° and ±90°) are possible, and the bond angle potential then controls the density of kinks along the chain contour. The first model is a crude description of DNA-like biopolymer…

research product