0000000000235397
AUTHOR
Lukas Wacker
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
Societal upheaval occurred across Eurasia in the sixth and seventh centuries. Tree-ring reconstructions suggest a period of pronounced cooling during this time associated with several volcanic eruptions. Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe1,2 and Asia3,4. In particular, the sixth century coincides with rising and falling civilizations1,2,3,4,5,6, pandemics7,8, human migration and political turmoil8,9,10,11,12,13. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring…
New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland
Abstract The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41–506 years and were growing between the Allerod and Preboreal (∼13′900–11′300 cal BP). Together with previously collected pines from this region, this world's best preserved Late…
Illuminating Intcal During the Younger Dryas
As the worldwide standard for radiocarbon (14C) dating over the past ca. 50,000 years, the International Calibration Curve (IntCal) is continuously improving towards higher resolution and replication. Tree-ring-based 14C measurements provide absolute dating throughout most of the Holocene, although high-precision data are limited for the Younger Dryas interval and farther back in time. Here, we describe the dendrochronological characteristics of 1448 new 14C dates, between ~11,950 and 13,160 cal BP, from 13 pines that were growing in Switzerland. Significantly enhancing the ongoing IntCal update (IntCal20), this Late Glacial (LG) compilation contains more annually precise 14C dates than any…
Introducing anatomical techniques to subfossil wood
Abstract Successful cross-dating of subfossil wood, ideally in combination with precise information on germination and dieback, requires the accurate detection of tree-ring width (TRW) boundaries along continuous measurement tracks from pith to bark. However, wood decay and the mechanical deformation of cells often challenge the dendrochronological analysis and subsequent paleoclimatic and environmental interpretations. Here, we show that wood anatomical techniques can improve the assessment of heavily degraded and/or deformed material. We apply state-of-the-art sample preparation, thin sectioning and double-staining to a unique collection of Late Glacial pines that were growing ∼13,000 yea…
Reply to 'Limited Late Antique cooling'
Sedimentary environment, lithostratigraphy and dating of sediment sequences from Arctic lakes Revvatnet and Svartvatnet in Hornsund, Svalbard
Abstract The sedimentary environment, sediment characteristics and age-depth models of sediment sequences from Arctic lakes Revvatnet and Svartvatnet, located near the Polish Polar Station in Hornsund, southern Svalbard (77°N), were studied with a view to establishing a basis for paleolimnological climate and environmental reconstructions. The results indicate that catchment-to-lake hydroclimatic processes probably affect the transportation, distribution and accumulation of sediments in different parts of lakes Revvatnet and Svartvatnet. Locations with continuous and essentially stable sedimentary environments were found in both lakes between water depths of 9 and 26 m. We used several diff…
Extraterrestrial confirmation of tree-ring dating
Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago
Highlights • Previous age estimates of the Laacher See Eruptions (LSE) around 12,900 years are still diverging and imprecise. • The combination of dendrochronology, wood anatomy, and 14C measurements holds the potential to establish a precise LSE date. • An absolute calendric date of the LSE would improve the synchronization of European Late Glacial to Holocene archives. Abstract The precise date of the Laacher See eruption (LSE), central Europe’s largest Late Pleistocene volcanic event that occurred around 13,000 years ago, is still unknown. Here, we outline the potential of combined high-resolution dendrochronological, wood anatomical and radiocarbon (14C) measurements, to refine the age …