0000000000235413

AUTHOR

Kai Rossnagel

showing 5 related works from this author

Survival of Floquet–Bloch States in the Presence of Scattering

2021

Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch elec…

Floquet theoryLetterField (physics)BioengineeringElectrons02 engineering and technologyElectronElectronic structureSettore FIS/03 - Fisica Della Materiadriven two-level system with dissipationGeneral Materials ScienceFloquet−Bloch statesPhysicsScatteringMechanical EngineeringRelaxation (NMR)General ChemistryTime-dependent density functional theorydissipation021001 nanoscience & nanotechnologyCondensed Matter Physicstime and angle-resolved photoemission spectroscopy3. Good healthFloquet-Bloch statestime-dependent density functional theoryFloquetBloch statesQuantum electrodynamicsddc:660Density functional theory0210 nano-technologytime- and angle-resolved photoemission spectroscopyNano Letters
researchProduct

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

2021

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

010302 applied physicsPhotonMaterials scienceElectronPhotoelectric effect01 natural sciencesFluenceSpace charge010305 fluids & plasmas620Electric fieldExtreme ultraviolet0103 physical sciencesddc:620Atomic physicsInstrumentationStorage ring
researchProduct

Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020

2021

Journal of physics / Condensed matter 33(23), 233001 (1-44) (2021). doi:10.1088/1361-648X/abeacd

photoemission spectroscopyPhotoemission spectroscopyComputer sciencephotoelectron spectroscopy02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesEngineering physics530X-ray photoelectron spectroscopyhard x-ray photoelectron spectroscopy0103 physical sciencesSnapshot (computer storage)General Materials Scienceddc:530Instrumentation (computer programming)010306 general physics0210 nano-technologyDen kondenserade materiens fysik
researchProduct

Ultrafast Metamorphosis of a Complex Charge Density Wave in Tantalumdiselenite

2016

Using ultrafast electron diffraction, we record the transformation between a nearly-commensurate and an incommensurate charge-density-wave in 1T-TaS2, which takes place orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions.

Condensed Matter::Quantum GasesDiffractionPhysicsOrders of magnitude (temperature)Ultrafast electron diffractionmedia_common.quotation_subjectPhysics::OpticsCondensed Matter::SuperconductivityElectric fieldCondensed Matter::Strongly Correlated ElectronsAtomic physicsTime-resolved spectroscopyMetamorphosisCharge density waveUltrashort pulsemedia_commonInternational Conference on Ultrafast Phenomena
researchProduct

Ultrafast Metamorphosis of a Complex Charge-Density Wave

2015

Modulated phases, commensurate or incommensurate with the host crystal lattice, are ubiquitous in solids. The transition between such phases involves formation and rearrangement of domain walls and is generally slow. Using ultrafast electron diffraction, we directly record the photoinduced transformation between a nearly commensurate and an incommensurate charge-density-wave phase in 1T-TaS(2). The transformation takes place on the picosecond time scale, orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions. The transition speed and mechanism can be linked to the peculiar nanoscale structure of the photoexcited nearly commensurate phase.

Condensed Matter::Quantum GasesMaterials scienceCondensed matter physicsUltrafast electron diffractionGeneral Physics and Astronomy02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesOrders of magnitude (time)Condensed Matter::SuperconductivityPicosecondPhase (matter)0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyNanoscopic scaleUltrashort pulseCharge density wavePhysical Review Letters
researchProduct