0000000000235435

AUTHOR

Zichao Tang

Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X=Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles

Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster…

research product

Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles

Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore the importance of surface ligands in promoting catalysis. As revealed by single-crystal diffraction, the 62 metal atoms in the cluster are arranged as a four-concentric-shell Ag@Au17@Ag27@Au17 structure. All phenylalkynyl (PA) ligands are linearly coordinated to the surface Au atoms with staple "PhC≡C-Au-C≡CPh" motif. Compared with reporte…

research product

From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13Cu2 Nanoclusters

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13Cu2, into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13Cu2(DPPP)3(SPy)6]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13Cu2((2r,4r)/(2s,4s)‐BDPP)3(SPy)6]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250–500 nm with maximum anisotropy factors of 1.2×10−3. DFT calculations provided good correlations wit…

research product

An Intermetallic Au24Ag20 Superatom Nanocluster Stabilized by Labile Ligands

An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L …

research product

Ligand-Stabilized Au13Cux (x = 2, 4, 8) Bimetallic Nanoclusters: Ligand Engineering to Control the Exposure of Metal Sites

Three novel bimetallic Au-Cu nanoclusters stabilized by a mixed layer of thiolate and phosphine ligands bearing pyridyl groups are synthesized and fully characterized by X-ray single crystal analysis and density functional theory computations. The three clusters have an icosahedral Au13 core face-capped by two, four, and eight Cu atoms, respectively. All face-capping Cu atoms in the clusters are triply coordinated by thiolate or pyridyl groups. The surface ligands control the exposure of Au sites in the clusters. In the case of the Au13Cu8 cluster, the presence of 12 2-pyridylthiolate ligands still leaves open space for catalysis. All the 3 clusters are 8-electron superatoms displaying opti…

research product

Plasmonic twinned silver nanoparticles with molecular precision

Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle dis…

research product

Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles

Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster…

research product

From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13 Cu2 , into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13 Cu2 (DPPP)3 (SPy)6 ]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13 Cu2 ((2r,4r)/(2s,4s)-BDPP)3 (SPy)6 ]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250-500 nm with maximum anisotropy factors of 1.2×10-3 . DFT calculations provided good corre…

research product

CCDC 1469852: Experimental Crystal Structure Determination

Related Article: Yu Wang, Xian-Kai Wan, Liting Ren, Haifeng Su, Gang Li, Sami Malola, Shuichao Lin, Zichao Tang, Hannu Häkkinen, Boon K Teo, Quan-Ming Wang, and Nanfeng Zheng|2016|J.Am.Chem.Soc.|138|3278|doi:10.1021/jacs.5b12730

research product

CCDC 1543483: Experimental Crystal Structure Determination

Related Article: Liting Ren, Peng Yuan, Haifeng Su, Sami Malola, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen , Lansun Zheng, and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|13288|doi:10.1021/jacs.7b07926

research product

CCDC 1496141: Experimental Crystal Structure Determination

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

research product

CCDC 1814032: Experimental Crystal Structure Determination

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

research product

CCDC 954905: Experimental Crystal Structure Determination

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

research product

CCDC 1814033: Experimental Crystal Structure Determination

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

research product

CCDC 954903: Experimental Crystal Structure Determination

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

research product

CCDC 1427733: Experimental Crystal Structure Determination

Related Article: Yu Wang, Haifeng Su, Chaofa Xu, Gang Li, Lars Gell, Shuichao Lin, Zichao Tang, Hannu Häkkinen, and Nanfeng Zheng|2015|J.Am.Chem.Soc.|137|4324|doi:10.1021/jacs.5b01232

research product

CCDC 954904: Experimental Crystal Structure Determination

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

research product

CCDC 1496142: Experimental Crystal Structure Determination

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

research product

CCDC 1543485: Experimental Crystal Structure Determination

Related Article: Liting Ren, Peng Yuan, Haifeng Su, Sami Malola, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen , Lansun Zheng, and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|13288|doi:10.1021/jacs.7b07926

research product

CCDC 1814031: Experimental Crystal Structure Determination

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

research product