0000000000235577

AUTHOR

Gabriele Oliva

0000-0001-7257-4079

Distance-constrained data clustering by combined k-means algorithms and opinion dynamics filters

Data clustering algorithms represent mechanisms for partitioning huge arrays of multidimensional data into groups with small in–group and large out–group distances. Most of the existing algorithms fail when a lower bound for the distance among cluster centroids is specified, while this type of constraint can be of help in obtaining a better clustering. Traditional approaches require that the desired number of clusters are specified a priori, which requires either a subjective decision or global meta–information knowledge that is not easily obtainable. In this paper, an extension of the standard data clustering problem is addressed, including additional constraints on the cluster centroid di…

research product

Distributed Data Clustering via Opinion Dynamics

We provide a distributed method to partition a large set of data in clusters, characterized by small in-group and large out-group distances. We assume a wireless sensors network in which each sensor is given a large set of data and the objective is to provide a way to group the sensors in homogeneous clusters by information type. In previous literature, the desired number of clusters must be specified a priori by the user. In our approach, the clusters are constrained to have centroids with a distance at least ε between them and the number of desired clusters is not specified. Although traditional algorithms fail to solve the problem with this constraint, it can help obtain a better cluste…

research product