0000000000235703

AUTHOR

Cyrill Kontz

showing 4 related works from this author

Optimal control of a three-level quantum system by laser fields plus von Neumann measurements

2008

International audience; We investigate the control of a three-level quantum system by laser fields assisted by von Neumann measurements. We consider a system which is not completely controllable by unitary evolution but which becomes controllable if particular measurements are used. The optimal control is defined from a cost functional which takes into account the measurements. The cost corresponds either to the minimization of the duration of the control or to the minimization of the energy of the laser field. Using the Pontryagin maximum principle, we determine the optimal control which steers the system from a given initial state toward a desired target state. This allows one to determin…

PhysicsQuantum decoherenceField (physics)[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]ObservableState (functional analysis)LaserOptimal control01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmaslaw.inventionsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawControl theoryQuantum mechanics0103 physical sciencessymbolsQuantum system010306 general physicsVon Neumann architecture
researchProduct

Target states and control of molecular alignment in a dissipative medium

2006

Received 17 August 2006; published 14 November 2006We investigate how and to what extent molecular alignment can be controlled in a dissipative medium by asuitable train of laser pulses. We focus primarily on the extension of a scheme of control originally constructedfor unitary evolution. The procedure is applied to control the alignment of CO molecules in an Ar gas. Theparameters of the train of kicks—i.e., the intensity of each kick and the delay between them—are eitherobtained by a systematic procedure maximum strategy or by optimization by evolutionary algorithms.DOI: 10.1103/PhysRevA.74.053411 PACS number s : 32.80.Lg, 33.80. b, 42.50.Hz

PhysicsClassical mechanicsCarbon oxide[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]lawDissipative systemStatistical physicsMolecular alignmentUnitary evolutionLaserFocus (optics)Atomic and Molecular Physics and Opticslaw.invention
researchProduct

Laser control in a bifurcating region

2006

We present a complete analysis of the laser control of a model molecular system using both optimal control theory and adiabatic techniques. This molecule has a particular potential energy surface with a bifurcating region connecting three potential wells which allows a variety of processes such as isomerization, tunnelling or implementation of quantum gates on one or two qubits. The parameters of the model have been chosen so as to reproduce the main features of H3CO which is a molecule-benchmark for such dynamics. We show the feasibility of different processes and we investigate their robustness against variations of laser field. We discuss the conditions under which each method of control…

Physics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Quantum Physics010304 chemical physicsField (physics)FOS: Physical sciencesOptimal control01 natural sciencesPotential energyAtomic and Molecular Physics and OpticsQuantum gate[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Quantum mechanicsQubit0103 physical sciencesPotential energy surface[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]010306 general physicsAdiabatic processQuantum Physics (quant-ph)ComputingMilieux_MISCELLANEOUSQuantum tunnelling
researchProduct

Laser control of photoinduced dynamics : Quantum gates

2006

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct