0000000000235842
AUTHOR
Ina Wiedemann
Isolation of chlorophyll-protein complexes and quantification of electron transport components in Synura petersenii and Tribonema aequale
The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinuous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spect…
Die Lichtsammelkomplexe der verschiedenen Algenstämme Phylogenetische Vielfalt eukaryotischer Photosyntheseapparate
The molecular architecture of the thylakoid membrane from various classes of eukaryotic algae
There is convincing consensus that the photosynthetic apparatus is of prokaryotic origin. The wide variety of algal plastids is mostly assumed to be the result of different endocytological events. Chloroplasts surrounded by two membranes as in rhodophytes and chlorophytes were considered as the association of a prokaryotic symbiont and a eukaryotic host, whereas algae having a chloroplast surrounded with more than two membranes can be delineated from an endocytological event of two eukaryotes (see S. Gibbs in this volume). Since chlorophyll b was neither combined with chlorophyll c nor with phycobiliproteins it was proposed that all present day chloroplasts can be integrated in three lines.…