0000000000235952

AUTHOR

E. A. Gazazyan

Implementation of a double-scanning technique for studies of the Hanle effect in rubidium vapor

We have studied the resonance fluorescence of a room-temperature rubidium vapor exited to the atomic 5P3/2 state (D2 line) by powerful single-frequency cw laser radiation (1.25 W/cm^2) in the presence of a magnetic field. In these studies, the slow, linear scanning of the laser frequency across the hyperfine transitions of the D2 line is combined with a fast linear scanning of the applied magnetic field, which allows us to record frequency-dependent Hanle resonances from all the groups of hyperfine transitions including V- and Lambda - type systems. Rate equations were used to simulate fluorescence signals for 85Rb due to circularly polarized exciting laser radiation with different mean fre…

research product

Transition cancellations of 87Rb and 85Rb atoms in a magnetic field

We have analyzed the magnetic field dependencies of the intensities of all the optical transitions between magnetic sublevels of hyperfine levels, excited with σ + , π , and σ − polarized light, for the D 1 and D 2 lines of 87 R b and 85 R b atoms. Depending on the type of transition and the quantum numbers of the involved levels, the Hamiltonian matrices are of 1 × 1 , 2 × 2 , 3 × 3 , or 4 × 4 dimension. As an example, analytical expressions are presented for the case of 2 × 2 dimension matrices for the D 1 line of both isotopes. Eigenvalues and eigenkets are given, and the expression for the transition intensity as a function of B has been determined. It is found that some π transitions o…

research product