0000000000236022

AUTHOR

Marie-hélène Nadal

Effects of temperature and pressure on microcantilever resonance response.

Abstract The variation in resonance response of microcantilevers was investigated as a function of pressure (10 −2 –10 6  Pa) and temperature (290–390 K) in atmospheres of helium (He) and dry nitrogen (N 2 ). Our results for a silicon cantilever under vacuum show that the frequency varies in direct proportion to the temperature. The linear response is explained by the decrease in Young's modulus with increasing the temperature. However, when the cantilever is bimaterial, the response is nonlinear due to differential thermal expansion. Resonance response as a function of pressure shows three different regions, which correspond to molecular flow regime, transition regime, and viscous regime. …

research product

Changes in surface stress, morphology and chemical composition of silica and silicon nitride surfaces during the etching by gaseous HF acid

Abstract HF acid attack of SiO2 and Si3N4 substrates is analyzed to improve the sensitivity of a sensor based on microcantilever. Ex situ analysis of the etching using XPS, SIMS and AFM show significant changes in the anisotropy and the rate of the etching of the oxides on SiO2 and Si3N4 surface. Those differences influence the kinetic evolution of the plastic bending deflection of the cantilever coated with SiO2 and Si3N4 layer, respectively. The linear dependence between the HF concentration and the Si3N4 cantilever bending corresponds to a deep attack of the layer whereas the non-linear behavior observed for SiO2 layer can be explained by a combination of deep and lateral etching. The ca…

research product

Laser-ultrasonics: a non-contact method to link the acoustic attenuation to metal damping properties up to the melting point

The objective of this work is to describe the viscoelastic behavior of metals up to their melting temperature by measuring the velocity and the attenuation of ultrasonics waves. For that purpose, a technique called laser-ultrasonics has been optimized for the high temperature domain and the solid to liquid transition. This paper is especially applied to the viscoelastic characterization of tin, from room temperature up to the melting point.

research product

Evaluation of viscoelastic constants of metallic materials by laser-ultrasonics at elevating temperature

The main objective of this study is the determination of elastic moduli and viscosity coefficients of metals at elevating temperature up to melting point. More specifically, it involves the analysis of the propagation of acoustic waves generated and detected simultaneously by laser-ultrasonic for the measurement of longitudinal and shear velocities. This preliminary work primarily concerns Tin (Sn) metal known for its low melting point and attenuation coefficient.

research product

Detection of gas trace of hydrofluoric acid using microcantilever

Abstract Microcantilevers have been used as a gas sensor in order to detect Hydrofluoric acid (HF) in the concentration range of 0.26–13 ppm. Silicon derived elements (Si 3 N 4 , SiO x ) were chosen to serve as chemical sensitive layer. Cantilever deflection and frequency shift were analyzed and compared as a function of the flow rate and the concentration of the HF molecules. The stoichiometry and roughness of the sensitive layer were found to be of major importance. Results show that the most appropriate signal at the lowest concentration ( x surface by HF. The frequency shift that is mainly governed by the loss in cantilever mass can be used at higher concentration.

research product

Visible photothermal deflection spectroscopy using microcantilevers

International audience; Photothermal deflection spectroscopy based on bi-material cantilevers combines the sensitivity of miniature sensors and the selectivity of optical spectroscopy. In this paper, we report on the photothermal response of the microcantilevers functionalized with nanometer thin organic films in the visible region. Unlike responses in the infrared regime, in the optical region, light absorption by all the cantilever constituents must be considered for extraction of the physical parameters of the organic layer. A model of photothermal deflection for the optical region has been developed for two absorbing layers consisting of a thick metal (>200 nm) and a thin organic film. …

research product