A fuzzification of the category of M-valued L-topological spaces
[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.
Ideal-valued topological structures
With L a complete lattice and M a continuous lattice, this paper demonstrates an adjunction between M -valued L-topological spaces (i.e. (L,M )-topological spaces) and Idl(M )-valued L-topological spaces where Idl(M ) is the complete lattice of all ideals of M . It is shown that the right adjoint functor provides a procedure of generating (L,M )-topologies from antitone families of (L,M )-topologies. This procedure is then applied to give an internal characterization of joins in the complete lattice of all (L,M )-topologies on a given set.