0000000000236075

AUTHOR

Tomasz Kubiak

0000-0002-3445-2422

showing 2 related works from this author

A fuzzification of the category of M-valued L-topological spaces

2004

[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.

Pure mathematicsFunctorHomotopy categoryDiagram (category theory)Mathematics::General Mathematicslcsh:Mathematicslcsh:QA299.6-433lcsh:Analysislcsh:QA1-939GL-monoid(LM)-fuzzy topologyPower-set operators(LM)-interior operatorMathematics::Category TheoryCategory of topological spacesBiproductUniversal propertyGeometry and TopologyM-valued L-topologyCategory of setsL-fuzzy category(LM)-neighborhood systemMathematicsInitial and terminal objectsApplied General Topology
researchProduct

Ideal-valued topological structures

2010

With L a complete lattice and M a continuous lattice, this paper demonstrates an adjunction between M -valued L-topological spaces (i.e. (L,M )-topological spaces) and Idl(M )-valued L-topological spaces where Idl(M ) is the complete lattice of all ideals of M . It is shown that the right adjoint functor provides a procedure of generating (L,M )-topologies from antitone families of (L,M )-topologies. This procedure is then applied to give an internal characterization of joins in the complete lattice of all (L,M )-topologies on a given set.

LogicHigh Energy Physics::LatticeFuzzy setCharacterization (mathematics)AdjunctionTopologySet (abstract data type)CombinatoricsLattice (module)Complete latticeArtificial IntelligenceIdeal (order theory)Adjoint functorsMathematicsFuzzy Sets and Systems
researchProduct