0000000000236094
AUTHOR
Hans C. Andersen
Scaling behavior in the $\beta$-relaxation regime of a supercooled Lennard-Jones mixture
We report the results of a molecular dynamics simulation of a supercooled binary Lennard-Jones mixture. By plotting the self intermediate scattering functions vs. rescaled time, we find a master curve in the $\beta$-relaxation regime. This master curve can be fitted well by a power-law for almost three decades in rescaled time and the scaling time, or relaxation time, has a power-law dependence on temperature. Thus the predictions of mode-coupling-theory on the existence of a von Schweidler law are found to hold for this system; moreover, the exponents in these two power-laws are very close to satisfying the exponent relationship predicted by the mode-coupling-theory. At low temperatures, t…
Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture I: The van Hove Correlation Function
We report the results of a large scale computer simulation of a binary supercooled Lennard-Jones liquid. We find that at low temperatures the curves for the mean squared displacement of a tagged particle for different temperatures fall onto a master curve when they are plotted versus rescaled time $tD(T)$, where $D(T)$ is the diffusion constant. The time range for which these curves follow the master curve is identified with the $\alpha$-relaxation regime of mode-coupling theory (MCT). This master curve is fitted well by a functional form suggested by MCT. In accordance with idealized MCT, $D(T)$ shows a power-law behavior at low temperatures. The critical temperature of this power-law is t…
Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture II: Intermediate Scattering Function and Dynamic Susceptibility
We have performed a molecular dynamics computer simulation of a supercooled binary Lennard-Jones system in order to compare the dynamical behavior of this system with the predictions of the idealized version of mode-coupling theory (MCT). By scaling the time $t$ by the temperature dependent $\alpha$-relaxation time $\tau(T)$, we find that in the $\alpha$-relaxation regime $F(q,t)$ and $F_s(q,t)$, the coherent and incoherent intermediate scattering functions, for different temperatures each follows a $q$-dependent master curve as a function of scaled time. We show that during the early part of the $\alpha$-relaxation, which is equivalent to the late part of the $\beta$-relaxation, these mast…
Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture
We present the results of a large scale molecular dynamics computer simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures and intermediate times the time dependence of the intermediate scattering function is well described by a von Schweidler law. The von Schweidler exponent is independent of temperature and depends only weakly on the type of correlator. For long times the correlation functions show a Kohlrausch behavior with an exponent $\beta$ that is independent of temperature. This dynamical behavior is in accordance with the mode-coupling theory of supercooled liquids.
Dynamics of a Supercooled Lennard-Jones System: Qualitative and Quantitative Tests of Mode-Coupling Theory
Using a molecular dynamics computer simulation we investigate the dynamics of a supercooled binary Lennard-Jones mixture. At low temperatures this dynamics can be described very well by the ideal version of mode-coupling theory. In particular we find that at low temperatures the diffusion constants show a power-law behavior, that the intermediate scattering functions obey the time temperature superposition principle, and that the various relaxation times show a power-law behavior. By solving the wave-vector dependent mode-coupling equations we demonstrate that the prediction of the theory for the wave-vector dependence of the nonergodicity parameters and the r-dependence of the critical amp…
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture
Abstract We have performed a molecular dynamics computer simulation study to investigate the dynamical behavior of a supercooled simple liquid for comparison with the predictions of mode-coupling theory (MCT). By scaling the intermediate scattering function by the α-relaxation time r we find that the correlators fall onto a master curve extending over several decades in time. Thus we find that the time temperature superposition principle holds. In the late β-relaxation regime this master curve can be fitted very well by a master curve predicted by the idealized version MCT. However, there is no evidence for the presence of the critical decay predicted by the theory for the early part of the…