0000000000236094

AUTHOR

Hans C. Andersen

Scaling behavior in the $\beta$-relaxation regime of a supercooled Lennard-Jones mixture

We report the results of a molecular dynamics simulation of a supercooled binary Lennard-Jones mixture. By plotting the self intermediate scattering functions vs. rescaled time, we find a master curve in the $\beta$-relaxation regime. This master curve can be fitted well by a power-law for almost three decades in rescaled time and the scaling time, or relaxation time, has a power-law dependence on temperature. Thus the predictions of mode-coupling-theory on the existence of a von Schweidler law are found to hold for this system; moreover, the exponents in these two power-laws are very close to satisfying the exponent relationship predicted by the mode-coupling-theory. At low temperatures, t…

research product

Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture I: The van Hove Correlation Function

We report the results of a large scale computer simulation of a binary supercooled Lennard-Jones liquid. We find that at low temperatures the curves for the mean squared displacement of a tagged particle for different temperatures fall onto a master curve when they are plotted versus rescaled time $tD(T)$, where $D(T)$ is the diffusion constant. The time range for which these curves follow the master curve is identified with the $\alpha$-relaxation regime of mode-coupling theory (MCT). This master curve is fitted well by a functional form suggested by MCT. In accordance with idealized MCT, $D(T)$ shows a power-law behavior at low temperatures. The critical temperature of this power-law is t…

research product

Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture II: Intermediate Scattering Function and Dynamic Susceptibility

We have performed a molecular dynamics computer simulation of a supercooled binary Lennard-Jones system in order to compare the dynamical behavior of this system with the predictions of the idealized version of mode-coupling theory (MCT). By scaling the time $t$ by the temperature dependent $\alpha$-relaxation time $\tau(T)$, we find that in the $\alpha$-relaxation regime $F(q,t)$ and $F_s(q,t)$, the coherent and incoherent intermediate scattering functions, for different temperatures each follows a $q$-dependent master curve as a function of scaled time. We show that during the early part of the $\alpha$-relaxation, which is equivalent to the late part of the $\beta$-relaxation, these mast…

research product

Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture

We present the results of a large scale molecular dynamics computer simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures and intermediate times the time dependence of the intermediate scattering function is well described by a von Schweidler law. The von Schweidler exponent is independent of temperature and depends only weakly on the type of correlator. For long times the correlation functions show a Kohlrausch behavior with an exponent $\beta$ that is independent of temperature. This dynamical behavior is in accordance with the mode-coupling theory of supercooled liquids.

research product

Dynamics of a Supercooled Lennard-Jones System: Qualitative and Quantitative Tests of Mode-Coupling Theory

Using a molecular dynamics computer simulation we investigate the dynamics of a supercooled binary Lennard-Jones mixture. At low temperatures this dynamics can be described very well by the ideal version of mode-coupling theory. In particular we find that at low temperatures the diffusion constants show a power-law behavior, that the intermediate scattering functions obey the time temperature superposition principle, and that the various relaxation times show a power-law behavior. By solving the wave-vector dependent mode-coupling equations we demonstrate that the prediction of the theory for the wave-vector dependence of the nonergodicity parameters and the r-dependence of the critical amp…

research product

Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture

Abstract We have performed a molecular dynamics computer simulation study to investigate the dynamical behavior of a supercooled simple liquid for comparison with the predictions of mode-coupling theory (MCT). By scaling the intermediate scattering function by the α-relaxation time r we find that the correlators fall onto a master curve extending over several decades in time. Thus we find that the time temperature superposition principle holds. In the late β-relaxation regime this master curve can be fitted very well by a master curve predicted by the idealized version MCT. However, there is no evidence for the presence of the critical decay predicted by the theory for the early part of the…

research product