Regulation of B cell homeostasis and activation by the tumor suppressor gene CYLD
B cell homeostasis is regulated by multiple signaling processes, including nuclear factor-kappaB (NF-kappaB), BAFF-, and B cell receptor signaling. Conditional disruption of genes involved in these pathways has shed light on the mechanisms governing signaling from the cell surface to the nucleus. We describe a novel mouse strain that expresses solely and excessively a naturally occurring splice variant of CYLD (CYLD(ex7/8) mice), which is a deubiquitinating enzyme that is integral to NF-kappaB signaling. This shorter CYLD protein lacks the TRAF2 and NEMO binding sites present in full-length CYLD. A dramatic expansion of mature B lymphocyte populations in all peripheral lymphoid organs occur…
Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis
Autoreactive CD4+ T lymphocytes play a vital role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Since the discovery of T helper 17 cells, there is an ongoing debate whether T helper 1, T helper 17 or both subtypes of T lymphocytes are important for the initiation of autoimmune neuroinflammation. We examined peripheral blood CD4+ cells from patients with active and stable relapsing-remitting multiple sclerosis, and used mice with conditional deletion or over-expression of the transforming growth factor-beta inhibitor Smad7, to delineate the role of Smad7 in T cell differentiation and autoimmune neuroinflammation. We found that Smad…
The IgG1 B-cell receptor provides survival and proliferative signals analogue to the Igα but not the Igβ co-receptor.
The function of the IgM B-cell receptor (BCR) is dependent on intact signaling of the co-receptors Igα and Igβ, both of which contain a cytoplasmic tail bearing an immunoreceptor tyrosine-based activation motif. We have previously demonstrated that the cytoplasmic tail of the IgG1 BCR can partially compensate for the loss of the signaling moiety of Igα. Here, we show that unlike Igα, Igβ signaling is indispensable for the development and function of IgG1-expressing B cells. Deletion of the cytoplasmic signaling tail of Igβ compromised the survival and proliferation not only of IgM(+) B cells but also of IgG1-expressing B cells. In the absence of the signaling tail of Igβ, the transcription …
IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig alpha/beta.
We describe a mouse strain in which B cell development relies either on the expression of membrane-bound immunoglobulin (Ig) gamma1 or mu heavy chains. Progenitor cells expressing gamma1 chains from the beginning generate a peripheral B cell compartment of normal size with all subsets, but a partial block is seen at the pro- to pre-B cell transition. Accordingly, gamma1-driven B cell development is disfavored in competition with developing B cells expressing a wild-type (WT) IgH locus. However, the mutant B cells display a long half-life and accumulate in the mature B cell compartment, and even though partial truncation of the Ig alpha cytoplasmic tail compromises their development, it does…