0000000000236409

AUTHOR

Mitasha Bharadwaj

The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensa…

research product

αv-Class integrin binding to fibronectin is solely mediated by RGD and unaffected by an RGE mutation.

Fibronectin (FN) is an essential glycoprotein of the extracellular matrix; binds integrins, syndecans, collagens, and growth factors; and is assembled by cells into complex fibrillar networks. The RGD motif in FN facilitates cell binding and fibrillogenesis through binding to α5β1 and αv-class integrins. However, whether RGD is the sole binding site for αv-class integrins is unclear. Most notably, substituting aspartate with glutamate (RGE) was shown to eliminate integrin binding in vitro, while mouse genetics revealed that FNRGE preserves αv-class integrin binding and fibrillogenesis. To address this conflict, we employed single-cell force spectroscopy, engineered cells, and RGD motif–defi…

research product

Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second

Integrin-mediated mechanosensing of the extracellular environment allows cells to control adhesion and signalling. Whether cells sense and respond to force immediately upon ligand-binding is unknown. Here, we report that during adhesion initiation, fibroblasts respond to mechanical load by strengthening integrin-mediated adhesion to fibronectin (FN) in a biphasic manner. In the first phase, which depends on talin and kindlin as well as on the actin nucleators Arp2/3 and mDia, FN-engaged α5β1 integrins activate focal adhesion kinase (FAK) and c-Src in less than 0.5 s to steeply strengthen α5β1- and αV-class integrin-mediated adhesion. When the mechanical load exceeds a certain threshold, fib…

research product

Author response: The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

research product