0000000000236556

AUTHOR

Antonino Giorgio Spera

ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.

Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .

research product

Divisible designs and groups

We study (s, k, λ1, λ2)-translation divisible designs with λ1≠0 in the singular and semi-regular case. Precisely, we describe singular (s, k, λ1, λ2)-TDD's by quasi-partitions of suitable quotient groups or subgroups of their translation groups. For semi-regular (s, k, λ1, λ2)-TDD's (and, more general, for the case λ2>λ1) we prove that their translation groups are either Frobenius groups or p-groups of exponent p. Some examples are given for the singular, semi-regular and regular case.

research product

Asymptotically good codes from generalized algebraic-geometry codes

We consider generalized algebraic-geometry codes, based on places of the same degree of a fixed algebraic function field over a finite field. In this note, using a method similar to the Justesen's one, we construct a family of such codes which is asymptotically good.

research product

On Geometric Goppa codes on Fermat curves.

research product

On divisible designs and twisted field planes

research product

Automorphisms of hyperelliptic GAG-codes

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

research product