0000000000236876

AUTHOR

M. Ilyn

Ba$^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector

If neutrinos are their own antiparticles, the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay ($\beta\beta 0\nu$) can occur, with a characteristic lifetime which is expected to be very long, making the suppression of backgrounds a daunting task. It has been shown that detecting (``tagging'') the Ba$^{+2}$ dication produced in the double beta decay ${}^{136}\mathrm{Xe} \rightarrow {}^{136}$Ba$^{+2}+ 2 e + (2 \nu)$ in a high pressure gas experiment, could lead to a virtually background free experiment. To identify these \Bapp, chemical sensors are being explored as a key tool by the NEXT collaboration . Although used in many fields, the application of such chemose…

research product

Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness

Ferromagnetic insulators (FI) can induce a strong exchange field in an adjacent superconductor (S) via the magnetic proximity effect. This manifests as spin splitting of the BCS density of states of the superconductor, an important ingredient for numerous superconducting spintronics applications and the realization of Majorana fermions. A crucial parameter that determines the magnitude of the induced spin splitting in FI/S bilayers is the thickness of the S layer d: In very thin samples, the superconductivity is suppressed by the strong magnetism. By contrast, in very thick samples, the spin splitting is absent at distances away from the interface. In this work, we calculate the density of …

research product