6533b7d4fe1ef96bd1262a42

RESEARCH PRODUCT

Ba$^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector

P. Herrero-gómezJ. P. CalupitanM. IlynA. Berdonces-layuntaT. WangD. G. De OteyzaM. CorsoR. González-morenoI. RivillaB. AparicioA. I. AranburuZ. FreixaF. MonrabalF. P. CossíoJ. J. Gómez-cadenasC. RogeroC. AdamsH. AlmazánV. AlvarezL. AraziI. J. ArnquistS. AyetC. D. R. AzevedoK. BaileyF. BallesterJ. M. Benlloch-rodríguezF. I. G. M. BorgesS. BounasserN. ByrnesS. CárcelJ. V. CarriónS. CebriánE. ChurchC. A. N. CondeT. ContrerasA. A. DenisenkoG. DíazJ. DíazT. DickelJ. EscadaR. EsteveA. FahsR. FelkaiL. M. P. FernandesP. FerrarioA. L. FerreiraF. W. FossE. D. C. FreitasJ. GenerowiczA. GoldschmidtD. González-díazR. GuenetteR. M. GutiérrezJ. HaefnerK. HafidiJ. HauptmanC. A. O. HenriquesJ. A. Hernando MorataV. HerreroJ. HoY. IferganB. J. P. JonesM. KekicL. LabargaA. LaingL. LarizgoitiaP. LebrunD. Lopez GutierrezN. López-marchM. LosadaR. D. P. ManoJ. Martín-alboA. MartínezG. Martínez-lemaM. Martínez-varaA. D. McdonaldZ. E. MezianiK. MistryC. M. B. MonteiroF. J. MoraJ. Muñoz VidalK. NavarroP. NovellaD. R. NygrenE. OblakM. Odriozola-gimenoB. PalmeiroA. ParaJ. PérezM. QuerolA. RaymondA. B. RedwineJ. RennerL. RipollY. Rodríguez GarcíaJ. RodríguezL. RogersB. RomeoC. Romo-luqueF. P. SantosJ. M. F. Dos SantosA. SimónM. SorelC. StanfordJ. M. R. TeixeiraP. ThapaJ. F. ToledoJ. TorrentA. UsónJ. F. C. A. VelosoT. T. VuongR. WebbJ. T. WhiteK. WoodruffN. Yahlali

subject

Chemical Physics (physics.chem-ph)High Energy Physics - Experiment (hep-ex)Condensed Matter - Materials SciencePhysics - Chemical PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHigh Energy Physics - Experiment

description

If neutrinos are their own antiparticles, the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay ($\beta\beta 0\nu$) can occur, with a characteristic lifetime which is expected to be very long, making the suppression of backgrounds a daunting task. It has been shown that detecting (``tagging'') the Ba$^{+2}$ dication produced in the double beta decay ${}^{136}\mathrm{Xe} \rightarrow {}^{136}$Ba$^{+2}+ 2 e + (2 \nu)$ in a high pressure gas experiment, could lead to a virtually background free experiment. To identify these \Bapp, chemical sensors are being explored as a key tool by the NEXT collaboration . Although used in many fields, the application of such chemosensors to the field of particle physics is totally novel and requires experimental demonstration of their suitability in the ultra-dry environment of a xenon gas chamber. Here we use a combination of complementary surface science techniques to unambiguously show that Ba$^{+2}$ ions can be trapped (chelated) in vacuum by an organic molecule, the so-called fluorescent bicolour indicator (FBI) (one of the chemosensors developed by NEXT), immobilized on a surface. We unravel the ion capture mechanism once the molecules are immobilised on Au(111) surface and explain the origin of the emission fluorescence shift associated to the trapping of different ions. Moreover, we prove that chelation also takes place on a technologically relevant substrate, as such, demonstrating the feasibility of using FBI indicators as building blocks of a Ba$^{+2}$ detector.

10.1038/s41467-022-35153-0http://arxiv.org/abs/2201.09099