0000000000237060
AUTHOR
Mitchell Schull
An integrated approach for high spatial resolution mapping of water and carbon fluxes using multi-sensor satellite data
In the last years, modeling of surface processes - such as water, energy and carbon budgets, as well as vegetation growth- seems to be focused on integrated approaches that combine aspects of hydrology, biology and meteorology into unified analyses. In this context, remotely sensed data often have a core role due to the cross-cutting impact of this novel source of spatially distributed information on all these research areas. However, several applications - such as drought monitoring, yield forecasting and crop management - require spatially detailed products at sub-field scales, which can be obtained only with support of adequately fine resolution remote sensing data (< 100 m). In particul…
Monitoring water and carbon fluxes at fine spatial scales using HyspIRI-like measurements
Remotely sensed observations in the visible to the shortwave infrared (VSWIR) and thermal infrared (TIR) regions of the electromagnetic spectrum can be used synergistically to provide valuable products of land surface properties for reliable assessments of carbon and water fluxes. The high spatial, spectral and temporal resolution VSWIR and TIR observations provided by the proposed Hyperspectral - InfraRed (HyspIRI) mission will enable a new era of global agricultural monitoring, critical for addressing growing issues of food insecurity. To enable predictions at fine spatial resolution (<100m), modeling efforts must rely on a combination of high-frequency temporal and highresolution spa…