0000000000237252

AUTHOR

Thorsten Schinke

Wnt1 Promotes Cementum and Alveolar Bone Growth in a Time-Dependent Manner

The WNT/β-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a Wnt1-inducible transgenic mouse model targeting Col1a1-expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced Wnt1 expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk. Micro–computed tomography (CT) analyses of the mandibles revealed a 1.8-fold increased bone volume after 1 and 3 wk of Wnt1 expression and a 3-fold increased bone volume aft…

research product

Cloning and Targeted Deletion of the Mouse Fetuin Gene

We proposed that the alpha2-Heremans Schmid glycoprotein/fetuin family of serum proteins inhibits unwanted mineralization. To test this hypothesis in animals, we cloned the mouse fetuin gene and generated mice lacking fetuin. The gene consists of seven exons and six introns. The cystatin-like domains D1 and D2 of mouse fetuin are encoded by three exons each, whereas a single terminal exon encodes the carboxyl-terminal domain D3. The promoter structure is well conserved between rat and mouse fetuin genes within the regions shown to bind transcription factors in the rat system. Expression studies demonstrated that mice homozygous for the gene deletion lacked fetuin protein and that mice heter…

research product

Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand.

Wnt signaling is important for proper embryonic development, shaping cell fate and migration, stem cell renewal, and organ and tissue formation. Here, Luther et al. investigated the role of Wnt1 in osteoporosis. Patients with early-onset osteoporosis and with WNT1 mutations had low bone turnover and high fracture rates, and loss of Wnt1 activity caused fracture and osteoporosis in mice. Inducing Wnt1 in bone-forming cells increased bone mass in aged mice, and this process did not require Lrp5, a co-receptor involved in Wnt signaling. This study identifies Wnt1 as an anabolic (bone building) factor and suggests that it might be a therapeutic target for osteoporosis.WNT1 mutations in humans a…

research product

Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients …

research product

Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts

Item does not contain fulltext Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Deltaep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone deg…

research product

Limited Proteolysis of Human α2-HS Glycoprotein/Fetuin

alpha2-HS glycoprotein is a major protein of human plasma whose function is still obscure. A proteolytically processed form of alpha2-HS glycoprotein lacking a segment of 40 amino acid residues bridging its heavy and light chain portions ("connecting peptide") has been described suggesting that this peptide is released by post-translational processing to fulfill biological role(s) of alpha2-HS glycoprotein. To test this hypothesis we investigated how the connecting peptide is released from the parental molecule by limited proteolysis. We developed monoclonal antibodies to various portions of the connecting peptide and its NH2-terminal flanking region which cross-react with the native alpha2…

research product

Human histidine-rich glycoprotein expressed in SF9 insect cells inhibits apatite formation

Histidine-rich glycoprotein (HRG) is structurally related to the alpha2-HS glycoprotein/fetuin family of mammalian plasma proteins; both belong to the cystatin superfamily of proteins. We expressed recombinant human HRG and alpha2-HS in Sf9 insect cells for functional analysis. Recombinant HRG bound heparin and fibrinogen while alpha2-HS did not. Both proteins inhibited the formation of apatite, recombinant HRG (IC50 approximately 1 microM) with 2-fold lower molar activity than alpha2-HS (IC50 approximately 0.5 microM). The inhibition in vitro of apatite formation suggests a new function for plasma HRG protein, inhibition of phase separation in blood vessels.

research product

The Serum Protein α2-HS Glycoprotein/Fetuin Inhibits Apatite Formation in Vitro and in Mineralizing Calvaria Cells

We present data suggesting a function of alpha2-HS glycoproteins/fetuins in serum and in mineralization, namely interference with calcium salt precipitation. Fetuins occur in high serum concentration during fetal life. They accumulate in bones and teeth as a major fraction of noncollagenous bone proteins. The expression pattern in fetal mice confirms that fetuin is predominantly made in the liver and is accumulated in the mineralized matrix of bones. We arrived at a hypothesis on the molecular basis of fetuin function in bones using primary rat calvaria osteoblast cultures and salt precipitation assays. Our results indicate that fetuins inhibit apatite formation both in cell culture and in …

research product