0000000000237384

AUTHOR

Georgios Kalamakis

0000-0003-0832-482x

showing 2 related works from this author

Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain.

2018

The function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain. We find that this smaller stem cell reservoir is protected from full depletion by an increase in quiescence that makes old NSCs more resistant to regenerate the injured brain. Once activated, however, young and old NSCs show similar proliferation and differentiation capacity. Single-cell transcriptomics of NSCs indicate that aging changes NSCs minimally. In the aging brain, niche-derived inflammatory signals and the Wnt antagonist sFRP5 induce…

MaleNeurogenesisSubventricular zoneInflammationBiologyGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencesMice0302 clinical medicineNeural Stem CellsmedicineAging brainsFRP5stem cell agingAnimalsHomeostasisquiescenceStem Cell Nichereproductive and urinary physiologyCellular Senescence030304 developmental biologyneural stem cellsCell Proliferation0303 health sciencesWnt signaling pathwayAge Factorssubventricular zoneBrainmodelingCell DifferentiationinterferonWnt signalingNeural stem cellCell biologynervous system diseasesNerve RegenerationMice Inbred C57BLmedicine.anatomical_structurenervous systeminflammationsimulationsmedicine.symptomStem cellbiological phenomena cell phenomena and immunitysingle-cell transcriptomics030217 neurology & neurosurgeryCell DivisionAdult stem cellCell
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct