0000000000237448

AUTHOR

C. Kiesling

showing 12 related works from this author

Operational Experience and Performance of the Belle II Pixel Detector

2021

Proceedings of the 29th International Workshop on Vertex Detectors (VERTEX2020), Tsukuba, Japan (Online); Journal of the Physical Society of Japan 34, 010002 (2021). doi:10.7566/JPSCP.34.010002

010308 nuclear & particles physicsComputer sciencebusiness.industry0103 physical sciencesddc:530Computer visionArtificial intelligence010306 general physicsbusiness53001 natural sciencesPixel detectorProceedings of the 29th International Workshop on Vertex Detectors (VERTEX2020)
researchProduct

Search for Axionlike Particles Produced in e+e− Collisions at Belle II

2020

We present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2<ma<9.7 GeV/c2 using data corresponding to an integrated luminosity of (445±3) pb-1. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength gaγγ of ALPs to photons at the level of 10-3 GeV-1. The limits are the most restrictive to date for 0.2<ma<1 GeV/c2.

PhysicsRange (particle radiation)Particle physicsGauge bosonLuminosity (scattering theory)Photon010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural scienceslaw.inventionStandard ModelPseudoscalarDirect productionlaw0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsColliderPhysical Review Letters
researchProduct

The Belle II vertex detector integration

2019

Belle II DEPFET, PXD, and SVD Collaborations: et al.

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSilicon sensorPhase (waves)Computer Science::Computational Geometry7. Clean energy01 natural scienceslaw.inventionNuclear physicsBelle II; Data acquisition; Pixel detector; Silicon sensor; Strip detector; Vertex detector; Nuclear and High Energy Physics; InstrumentationData acquisitionlaw0103 physical sciencesVertex detectorBelle IIStrip detectorColliderInstrumentationNuclear and High Energy PhysicPhysicsInterconnectionPixel010308 nuclear & particles physicsDetectorBelle II; data acquisition; pixel detector; silicon sensor; strip detector; vertex detectorData acquisitionPixel detectorUpgradeHigh Energy Physics::ExperimentFocus (optics)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

DEPFET pixel detector in the Belle II experiment

2019

Belle II DEPFET and PXD Collaboration: et al.

PhysicsPixel detectorsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsmedia_common.quotation_subject01 natural sciencesAsymmetryBelle experimentSolid state detectors—poster sessionTracking detectorsData acquisition0103 physical sciencesSilicon detectorsBelle IIHigh Energy Physics::Experiment010306 general physicsDEPFETInstrumentationmedia_commonPixel detectorNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Precise Measurement of the D0 and D+ Lifetimes at Belle II

2021

We report a measurement of the D^{0} and D^{+} lifetimes using D^{0}→K^{-}π^{+} and D^{+}→K^{-}π^{+}π^{+} decays reconstructed in e^{+}e^{-}→cc[over ¯] data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the ϒ(4S) resonance, correspond to an integrated luminosity of 72  fb^{-1}. The results, τ(D^{0})=410.5±1.1(stat)±0.8(syst)  fs and τ(D^{+})=1030.4±4.7(stat)±3.1(syst)  fs, are the most precise to date and are consistent with previous determinations.

PhysicsParticle physics010308 nuclear & particles physicslaw0103 physical sciencesGeneral Physics and AstronomyResonance010306 general physicsCollider01 natural scienceslaw.inventionLuminosityPhysical Review Letters
researchProduct

Belle II pixel detector: Performance of final DEPFET modules

2020

Belle-II DEPFET and PXD Collaboration: et al.

PhysicsNuclear and High Energy PhysicsLuminosity (scattering theory)Physics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryResolution (electron density)Detector01 natural sciencesOptics0103 physical sciencesPXDBelle IIHigh Energy Physics::ExperimentField-effect transistorVertex detectorImpact parameter010306 general physicsbusinessInstrumentationDEPFETPixel detector
researchProduct

Alignment for the first precision measurements at Belle II

2019

On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector. The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays. With increasing luminosity and experience, the alignment is …

QC1-999vertex detectorDetector calibrationBELLECosmic rayprogramming01 natural sciencesNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPhysicsMuonCOSMIC cancer database010308 nuclear & particles physicsPhysicsDetectordetector: alignmenttracksMagnetic fieldVertex (geometry)cosmic radiationdrift chamberHigh Energy Physics::ExperimentVertex detectorperformance
researchProduct

DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider

2013

arXiv:1212.2160v1.-- et al.

Vertex (graph theory)Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsvertex detectorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciences01 natural sciencesHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)Signal-to-noise ratiolaw0103 physical sciencesElectrical and Electronic EngineeringDetectors and Experimental Techniques010306 general physicsColliderPrecision Pixel Detectors [9.3]ComputingMethodologies_COMPUTERGRAPHICSAdvanced infrastructures for detector R&D [9]PhysicsPixel010308 nuclear & particles physicsDetectorFísicaInstrumentation and Detectors (physics.ins-det)Active pixel sensorNuclear Energy and EngineeringHigh Energy Physics::ExperimentVertex detectorlinear colliderddc:620DEPFETPixel detector
researchProduct

Commissioning and performance of the Belle II pixel detector

2021

Belle-II DEPFET and PXD Collaboration: et al.

PhysicsNuclear and High Energy PhysicsPixel010308 nuclear & particles physicsPhysics beyond the Standard Model01 natural sciencesNoise (electronics)law.inventionData setNuclear physicsPower consumptionlaw0103 physical sciencesField-effect transistorColliderInstrumentationPixel detector
researchProduct

Search for B+→K+νν¯ Decays Using an Inclusive Tagging Method at Belle II

2021

A search for the flavor-changing neutral-current decay B^{+}→K^{+}νν[over ¯] is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The data sample corresponds to an integrated luminosity of 63 fb^{-1} collected at the ϒ(4S) resonance and a sample of 9 fb^{-1} collected at an energy 60 MeV below the resonance. Because the measurable decay signature involves only a single charged kaon, a novel measurement approach is used that exploits not only the properties of the B^{+}→K^{+}νν[over ¯] decay, but also the inclusive properties of the other B meson in the ϒ(4S)→BB[over ¯] event, to suppress the background from other B meson decays and light-qua…

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsBranching fractionElectron–positron annihilationGeneral Physics and AstronomyResonance01 natural scienceslaw.inventionPair productionlaw0103 physical sciencesHigh Energy Physics::ExperimentB meson010306 general physicsColliderEnergy (signal processing)Physical Review Letters
researchProduct

First Observation ofCPViolation inB¯0→DCP(*)h0Decays by a Combined Time-Dependent Analysis ofBABARand Belle Data

2015

We report a measurement of the time-dependent CP asymmetry of B0->D(*)CP h0 decays, where the light neutral hadron h0 is a pi0, eta or omega meson, and the neutral D meson is reconstructed in the CP eigenstates K+ K-, K0S pi0 or K0S omega. The measurement is performed combining the final data samples collected at the Y(4S) resonance by the BaBar and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain ( 471 +/- 3 ) x 10^6 BB pairs recorded by the BaBar detector and ( 772 +/- 11 ) x 10^6, BB pairs recorded by the Belle detector. We measure the CP asymmetry parameters -eta_f S = +0.66 +/- 0.10 (stat.) +/- 0.06 (syst.) an…

PhysicsParticle physicsMeson010308 nuclear & particles physicsmedia_common.quotation_subjectHadronGeneral Physics and Astronomy01 natural sciencesOmegaAsymmetryB-factoryNuclear physicsKEKB0103 physical sciencesD mesonCP violation010306 general physicsmedia_commonPhysical Review Letters
researchProduct

Data quality monitors of vertex detectors at the start of the Belle II experiment

2019

The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking. This paper will report on the fin…

Physics::Instrumentation and DetectorsQC1-999vertex detectorBELLEquality: monitoring01 natural sciences7. Clean energyprogrammingSilicon vertex detectorlaw.inventionNuclear physicssemiconductor detector: pixellaw0103 physical sciencesQuality monitoring[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsCollidernumerical calculationsdetector: designactivity reportPhysics010308 nuclear & particles physicsPhysicsDetectorUpgradeFull dataData qualityPhysics::Accelerator Physicssemiconductor detector: microstripHigh Energy Physics::ExperimentupgradeVertex detectormonitoring: on-lineperformance
researchProduct