0000000000237682
AUTHOR
Alessandro Carbotti
Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.
Gamma-convergence of Gaussian fractional perimeter
Abstract We prove the Γ-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s → 1 - {s\to 1^{-}} . Our definition of fractional perimeter comes from that of the fractional powers of Ornstein–Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Γ-limit does not depend on the dimension.