0000000000237683

AUTHOR

Andrea Pinamonti

showing 3 related works from this author

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Universal differentiability sets and maximal directional derivatives in Carnot groups

2019

We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.

Pure mathematicsCarnot groupGeneral MathematicsDirectional derivative01 natural sciencesdifferentiaaligeometriasymbols.namesake0103 physical sciencesFOS: MathematicsCarnot group; Directional derivative; Lipschitz map; Pansu differentiable; Universal differentiability set; Mathematics (all); Applied MathematicsMathematics (all)Point (geometry)Differentiable function0101 mathematicsUniversal differentiability setEngel groupMathematics43A80 46G05 46T20 49J52 49Q15 53C17Directional derivativeuniversal differentiability setApplied Mathematicsta111010102 general mathematicsCarnot group16. Peace & justiceLipschitz continuityPansu differentiableFunctional Analysis (math.FA)Mathematics - Functional AnalysisHausdorff dimensionsymbols010307 mathematical physicsLipschitz mapfunktionaalianalyysiCarnot cycledirectional derivative
researchProduct

Loomis-Whitney inequalities in Heisenberg groups

2021

This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…

Mathematics - Classical Analysis and ODEsSobolev inequalityClassical Analysis and ODEs (math.CA)FOS: Mathematicsmittateoria28A75 52C99 46E35 35R03isoperimetric inequalityepäyhtälötfunktionaalianalyysiLoomis–Whitney inequalityHeisenberg groupRadon transformmatemaattinen analyysi
researchProduct