0000000000237713

AUTHOR

Mehr Nisa

showing 5 related works from this author

Evidence of 200 TeV photons from HAWC J1825-134

2020

The Earth is bombarded by ultra-relativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10$^{15}$ eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV $\gamma$-rays from decaying $\pi^0$, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cherenkov (HAWC) observatory of the $\gamma…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Photon010504 meteorology & atmospheric sciencesProtonMolecular cloudAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsRadiation7. Clean energy01 natural sciencesGalaxy13. Climate actionSpace and Planetary ScienceObservatory0103 physical sciencesPhysics::Accelerator PhysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsCherenkov radiation0105 earth and related environmental sciences
researchProduct

HAWC J2227+610 and its association with G106.3+2.7, a new potential Galactic PeVatron

2020

We present the detection of VHE gamma-ray emission above 100 TeV from HAWC J2227+610 with the HAWC observatory. Combining our observations with previously published results by VERITAS, we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.

HAWC - Abteilung HintonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Hydrogen compounds010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLower limitGalaxySpace and Planetary ScienceObservatory0103 physical sciencesSupernova remnantAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

3HWC: The Third HAWC Catalog of Very-High-Energy Gamma-ray Sources

2020

We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High Altitude Water Cherenkov (HAWC) observatory. The catalog represents the most sensitive survey of the Northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at $\geq$ 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within $1^\circ$ of previously detected TeV emitters, and twenty sources that are more than $1^\circ$ away from any previously detected TeV source. Of these twenty new so…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)High energyHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGamma-ray astronomyAstrophysics::Cosmology and Extragalactic AstrophysicsPulsarSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy Astrophysics
researchProduct

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

2020

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

Astrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatoryneutrino astronomyneutrino experiments0103 physical sciencessiteAstrophysics::Galaxy Astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)densityneutrino astronomy; neutrino detectors; neutrino experiments010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsflux [neutrino]redshiftRedshift surveyGalaxyRedshiftobservatoryNeutrino detectorPhysics and Astronomymultiplet13. Climate actioncorrelationPhysique des particules élémentairesIntergalactic travelHigh Energy Physics::ExperimentgalaxyNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomenaneutrino detectors
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct