0000000000238378
AUTHOR
Sonia Carbone
Ni alloy nanowires for alkaline electrolysers
In recent years, the interest towards green hydrogen has drastically increased due to the global decarbonization process. Green hydrogen is obtained by water electrolysis using only electricity from renewable sources. It is considered one of the best storage systems in terms of environmental sustainability but not in economic ones. Nowadays, the research is focused on improving the Alkaline Water Electrolysis (AE) to reduce the cost of production. An approach to improve AE performance is based on nanostructured electrodes characterized by high electrocatalytic activity due to the very high surface area. In fact, the development of more efficient electrolysers with low-cost electrode-electro…
Pd-Co-Based Electrodes for Hydrogen Production by Water Splitting in Acidic Media
To realize the benefits of a hydrogen economy, hydrogen must be produced cleanly, efficiently and affordably from renewable resources and, preferentially, close to the end-users. The goal is a sustainable cycle of hydrogen production and use: in the first stage of the cycle, hydrogen is produced from renewable resources and then used to feed a fuel cell. This cycle produces no pollution and no greenhouse gases. In this context, the development of electrolyzers producing high-purity hydrogen with a high efficiency and low cost is of great importance. Electrode materials play a fundamental role in influencing electrolyzer performances; consequently, in recent years considerable efforts have b…
Nanostructured nickel–zinc alloy electrodes for hydrogen evolution reaction in alkaline electrolyzer
PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring
Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic…
Galvanic deposition of Chitosan-AgNPs as antibacterial coating
Thanks to mechanical properties similar human bones, metallic materials represent the best choice for fabrication of orthopedic implants. Although metals could be widely used in the field of biomedical implants, corrosion phenomena could occur, causing metal ions releasing around periprosthetic tissues leading, in the worst cases, to the development of infections. In these cases, patients need prolonged antibiotic therapies that may cause bacterial resistance. Preventing bacterial colonization of biomedical surfaces is the key to limiting the spread of infections. Antibacterial coatings have become a very active field of research, strongly stimulated by the increasing urgency of identifying…