0000000000238690

AUTHOR

Quentin Faes

Equivalence relations among homology 3-spheres and the Johnson filtration

The Torelli group of a surface consists of isotopy classes of homeomorphisms of this surface acting trivially at the homological level. The structure of the Torelli group can be approached by the study and the comparison of two filtrations of this group: its lower central series, and the "Johnson" filtration, given by the kernels of the natural actions on the successive nilpotent quotients of the fundamental group of the surface. It is now known that there are, via the notion of "Heegaard splittings", rich interactions between this 2-dimensional study and the study of some 3-manifolds topological invariants: we refer here precisely to the so-called "finite-type" invariants. In this PhD, we …

research product

On the non-triviality of the torsion subgroup of the abelianized Johnson kernel

The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves. The rational abelianization of the Johnson kernel has been computed by Dimca, Hain and Papadima, and a more explicit form was subsequently provided by Morita, Sakasai and Suzuki. Based on these results, Nozaki, Sato and Suzuki used the theory of finite-type invariants of 3-manifolds to prove that the torsion subgroup of the abelianized Johnson kernel is non-trivial. In this paper, we give a purely 2-dimensional proof of the non-triviality of this torsion subgroup and provide a lower bound for its cardinality. Our main tool is the …

research product

The handlebody group and the images of the second Johnson homomorphism

Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism $\tau_2$ of $J_2$ and $\mathcal{A} \cap J_2$, respectively. In particular, we answer by the negative to a question asked by Levine about an algebraic description of $\tau_2(\mathcal{A} \cap J_2)$. By the same techniques, and for a Heegaard surface in $S^3$, we also compute the image by $\tau_2$ of the intersection of the …

research product

Triviality of the $J_4$-equivalence among homology 3-spheres

We prove that all homology 3-spheres are $J_4$-equivalent, i.e. that any homology 3-sphere can be obtained from one another by twisting one of its Heegaard splittings by an element of the mapping class group acting trivially on the fourth nilpotent quotient of the fundamental group of the gluing surface. We do so by exhibiting an element of $J_4$, the fourth term of the Johnson filtration of the mapping class group, on which (the core of) the Casson invariant takes the value $1$. In particular, this provides an explicit example of an element of $J_4$ that is not a commutator of length $2$ in the Torelli group.

research product