0000000000240015

AUTHOR

Gregory S. Nusinovich

Zones of soft and hard self-excitation in gyrotrons: Generalized approach

It is known that the gyrotron theory is developed in a general form that allows one to draw many important conclusions about gyrotron operation, which are valid for gyrotrons operating in arbitrary modes, at arbitrary frequencies, and driven by electron beams with different voltages and currents. One of important issues in this theory is the analysis of possible start-up scenarios, i.e., the methods allowing, first, to excite the desired mode prior to competitors in the region of soft self-excitation of this mode and, then, drive it into the zone of hard self-excitation where, as a rule, the operation with high efficiency is possible. So far, in all studies, these zones of soft and hard sel…

research product

Some Advantages of the Gyrotrons with Width Emitters

The main trends in gyrotron development are escalation of the radiated power and increasing the frequency of coherent radiation. For both trends it is beneficial to develop gyrotrons with wide emitters because this allows one to use cryomagnets with smaller inner bore sizes. For analyzing and optimizing the operation of gyrotrons with wide emitters it is proposed to represent such emitters as a superposition of thin rings and analyze the properties of electron beams emitted by each of these rings. The analysis of electron beam properties, for electron optical systems with different emitters is presented. The possibility to reduce velocity spread by anode profiling is discussed. The dynamics…

research product

To the theory of high-power gyrotrons with uptapered resonators

In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimization of the quality factor because the …

research product

Self-consistent non-stationary theory of the gyrotron

For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amp…

research product

Gyrotron Operation in the ‘No-Start-Current’ Zone

It is conventionally assumed that the gyrotrons can operate either in the regime of soft self-excitation, where the beam current exceeds the start current, or in the regime of hard excitation, where the beam current is lower than the start current. The authors have found one more possibility of gyrotron operation: in the region where there is no start current at all. Although it is not clear whether this region represents a special interest for gyrotron operation, it can be useful to learn that such opportunity may exist and can be used for interpreting some experimental results.

research product

Efficiency of gyrotrons with a tapered magnetic field in the regime of soft self-excitation

As a rule, gyrotron operation with high efficiency is realized in the regime of hard self-excitation that requires a special start-up scenario: either a tuning of the external magnetic field or providing certain relations between mod-anode and beam voltages. This paper describes a study of gyrotron operation in slightly tapered external magnetic fields. It is shown how the use of tapered magnetic fields affects the maximum efficiency realizable in hard and soft excitation regimes. First, a model of gyrotron with the Gaussian axial profile of the resonator field is studied. Then, a similar treatment is done for a realistic resonator designed for a 140 GHz Karlsruhe Institute for Technology g…

research product

Shadowing of the operating mode by sidebands in gyrotrons with diode-type electron guns

In gyrotrons operating in high-order modes, during the startup process, the shadowing of the operating mode by two sidebands may take place. By “shadowing,” we mean the situation when, during the voltage rise, one of the parasitic modes is excited first, and this excitation prevents the excitation of the desired mode. Then, the oscillations of the first parasitic mode, whose frequency is higher than the frequency of the desired operating mode, can be replaced by excitation of the second parasitic mode, whose frequency is lower than the operating one. As a result, the desired mode remains in the “shadow” of these parasitic modes and is never excited. This paper describes such effect in gyrot…

research product

Effect of the tilt on the gyrotron operation

The effect of the tilt of the electron beam axis on the gyrotron operation is investigated. It is commonly accepted that the tilt deteriorates the efficiency of cylindrical cavity gyrotrons. Our study showed that this deterioration can be mitigated by a proper displacement of the electron beam axis at the entrance. Also, in some cases, when the aftercavity interaction lowers the gyrotron efficiency, the tilt can reduce this interaction and, therefore, slightly increase the efficiency.

research product

Stability of gyrotron operation in very high-order modes

This study was motivated by the desire to increase the power, which can be delivered by gyrotrons in long pulse and continuous regimes. Since the admissible power level is determined by the density of ohmic losses in resonator walls, to increase the radiated power a gyrotron should operate in higher order modes. Using an existing gyrotron developed for plasma experiments in the International Thermonuclear Experimental Reactor as a base model, the stability of operation of such a gyrotron in modes with larger number of radial variations was studied. It is shown that the power level achievable in such gyrotrons in stable single mode regimes is close to 1.5 MW. The power level 1.7–1.8 MW can b…

research product

Possible gyrotron operation in the “no start current” zone caused by the axial dependence of the phase of the resonator field

It is known that gyrotrons (as well as other electron beam driven microwave and millimeter-wave oscillators) can operate in the regime of either soft or hard self-excitation. In the regime of soft self-excitation, the beam current exceeds its starting value; thus, the oscillations can start to grow from the noise produced by electrons. In the regime of hard self-excitation, the beam current is less than its starting value. Therefore, for exciting the oscillations, a certain start-up scenario is required, which may include the variation of the mod-anode and/or beam voltage or the guiding magnetic field. It was found recently [O. Dumbrajs and G. S. Nusinovich, Phys. Plasmas 25, 013121 (2018)]…

research product