0000000000240268
AUTHOR
Emili Balaguer
Predicting service request in support centers based on nonlinear dynamics, ARMA modeling and neural networks
In this paper, we present the use of different mathematical models to forecast service requests in support centers (SCs). A successful prediction of service request can help in the efficient management of both human and technological resources that are used to solve these eventualities. A nonlinear analysis of the time series indicates the convenience of nonlinear modeling. Neural models based on the time delay neural network (TDNN) are benchmarked with classical models, such as auto-regressive moving average (ARMA) models. Models achieved high values for the correlation coefficient between the desired signal and that predicted by the models (values between 0.88 and 0.97 were obtained in th…
An approach based on the Adaptive Resonance Theory for analysing the viability of recommender systems in a citizen Web portal
This paper proposes a methodology to optimise the future accuracy of a collaborative recommender application in a citizen Web portal. There are four stages namely, user modelling, benchmarking of clustering algorithms, prediction analysis and recommendation. The first stage is to develop analytical models of common characteristics of Web-user data. These artificial data sets are then used to evaluate the performance of clustering algorithms, in particular benchmarking the ART2 neural network with K-means clustering. Afterwards, it is evaluated the predictive accuracy of the clusters applied to a real-world data set derived from access logs to the citizen Web portal Infoville XXI (http://www…