0000000000240527

AUTHOR

Hartmut Abele

A measurement of the antineutrino asymmetry B in free neutron decay

Abstract We have measured the antineutrino asymmetry B in neutron beta decay, i.e., the correlation of the neutron spin and the antineutrino momentum, with a new method. Our result is B = 0.967 ± 0.006 stat ± 0.010 syst = 0.967 ± 0.012 . Statistical and systematic uncertainty can be considerably reduced in future experiments.

research product

Quantum motion of a neutron in a wave-guide in the gravitational field

We study theoretically the quantum motion of a neutron in a horizontal waveguide in the gravitational field of the Earth. The waveguide in question is equipped with a mirror below and a rough surface absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are determined mainly by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing waveguide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in th…

research product

Neutron Decay with PERC: a Progress Report

The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The …

research product

The beta-, neutrino- and proton-asymmetry in neutron beta-decay

This article describes measurements of angular-correlation coefficients in the decay of free neutrons with the superconducting spectrometer PERKEO II. A method for measuring the β-asymmetry coefficient A is presented, as well as a new method for determining the neutrino-asymmetry coefficient B, which allows a value for the proton-asymmetry coefficient C to be obtained for the first time. An ongoing experiment is trying to improve the accuracy of these quantities.

research product

Design of the Magnet System of the Neutron Decay Facility PERC

The PERC (Proton and Electron Radiation Channel) facility is currently under construction at the research reactor FRM II, Garching. It will serve as an intense and clean source of electrons and protons from neutron beta decay for precision studies. It aims to contribute to the determination of the Cabibbo-Kobayashi-Maskawa quark-mixing element $V_{ud}$ from neutron decay data and to search for new physics via new effective couplings. PERC's central component is a 12m long superconducting magnet system. It hosts an 8m long decay region in a uniform field. An additional high-field region selects the phase space of electrons and protons which can reach the detectors and largely improves system…

research product

Reply to Comment on Measurement of quantum states of neutrons in the Earth's gravitational field

Physical review / D 68(10), 108702 (2003). doi:10.1103/PhysRevD.68.108702

research product

Measurement of quantum states of neutrons in the Earth's gravitational field

The lowest stationary quantum state of neutrons in the Earth's gravitational field is identified in the measurement of neutron transmission between a horizontal mirror on the bottom and an absorber/scatterer on top. Such an assembly is not transparent for neutrons if the absorber height is smaller than the ``height'' of the lowest quantum state.

research product