0000000000240580
AUTHOR
Ana Hubel
Barrier effects on the spatial distribution of Xylella fastidiosa in Alicante, Spain
AbstractSpatial models often assume isotropy and stationarity, implying that spatial dependence is direction invariant and uniform throughout the study area. However, these assumptions are violated when dispersal barriers are present in the form of geographical features or disease control interventions. Despite this, the issue of non-stationarity has been little explored in the context of plant health. The objective of this study was to evaluate the influence of different barriers in the distribution of the quarantine plant pathogenic bacterium Xylella fastidiosa in the demarcated area in Alicante, Spain. Occurrence data from the official surveys in 2018 were analyzed with four spatial Baye…
Modeling the Spatial Distribution of Xylella fastidiosa: A Nonstationary Approach with Dispersal Barriers
Spatial species distribution models often assume isotropy and stationarity, implying that spatial dependence is direction-invariant and uniform throughout the study area. However, these assumptions are violated when dispersal barriers are present. Despite this, the issue of nonstationarity has been little explored in the context of plant health. The objective of this study was to evaluate the influence of barriers in the distribution of Xylella fastidiosa in the demarcated area in Alicante, Spain. Occurrence data from 2018 were analyzed through spatial Bayesian hierarchical models. The stationary model, illustrating a scenario without control interventions or geographical features, was com…