Kinetic Parameters for Thermal Degradation of Green Asparagus Texture by Unsteady-state Method
An unsteady-state method was developed for estimating texture degradation during heating-cooling of green asparagus spears. The method used a mathematical model of heat transmission for time-temperature history estimation, and a nonlinear regression of texture measurements of asparagus spears to estimate kinetic parameters. The specific heat, conductivity and convective coefficient of green asparagus were determined experimentally and used In the mathematical model for temperature estimation. Values obtained were Ea = 76.19±0.13 kJ/mol and k 1158°C = 0.00528±0.00005 s -1 . Good agreement was found between predicted and observed texture values. The method was compared with the classical stea…
Thermal inactivation at high temperatures and regeneration of green asparagus peroxidase
A spectrophotometric method was developed for determining the peroxidase activity of green asparagus in small samples. The optimum conditions for the analysis in the cuvette were 45 mM of H2O2 36 mM of guaiacol, and pH 7. The method can be used to determine enzyme activity at up to two decimal reductions. A study was performed of the regeneration and inactivation kinetics of the enzyme when heated between 90 and 125°C. Regenerated asparagus peroxidase reached its maximum activity after being stored 6 days at 25°C. The regenerated enzyme followed first-order inactivation kinetics, showing an Ea = 13.62 kcal/mol and k100°C = 2.07 min-1.
Inactivation and Regeneration Kinetics of Horseradish Peroxidase Heated at High Temperatures.
The inactivation kinetics of horseradish peroxidase (HRP) heated in capillary tubes in the range 110 to 135°C was studied. Its regeneration kinetics when stored at 4 and 25°C was also considered. As the severity of the treatment increased, the absolute value of the regeneration decreased. The storage temperature of the enzyme did not affect the percentage of maximum activity regenerable, although when this temperature was raised from 4 to 25°C the speed of regeneration increased. Kinetics of HRP inactivation determined after heating and after regeneration were compared. Both forms of the enzyme showed similar behavior with first-order inactivation kinetics, with Ea = 19.5 ± 1.0 kcal/mol and…
High-Temperature Short-Time Inactivation of Peroxidase by Direct Heating with a Five-Channel Computer-Controlled Thermoresistometer
The thermal inactivation kinetics of horseradish and asparagus peroxidase in high-temperature short-time conditions was studied by heating in a five-channel computer-controlled thermoresistometer. Horseradish peroxidase was heated between 111.5 and 145°C and the reaction was analyzed assuming that two isoenzymes with EaL = 44.1 and Eas = 22.0 kcal/mol were present. Asparagus peroxidase heated from 110 to l20°C reacted with first-order kinetics, with Ea = 20 kcal/mol. The five-channel computer-controlled thermoresistometer enabled us to study the inactivation kinetics of the more labile fraction of horseradish peroxidase at temperatures above 100°C; this equipment was suitable for studying t…