Existence of a traveling wave solution in a free interface problem with fractional order kinetics
Abstract In this paper we consider a system of two reaction-diffusion equations that models diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reaction order 0 α 1 . We turn the free interface problem into a scalar free boundary problem coupled with an integral equation. The main intermediary step is to reduce the scalar problem to the study of a non-Lipschitz vector field in dimension 2. The latter is treated by qualitative topological methods based on the Poincare-Bendixson Theorem. The phase portrait is determined and the existence of a stable manifold at the origin is proved. A significant result is that the settling time to reach the origin is fin…