Structural insight on organosilica electrodes for waste-free alcohol oxidations
Organic modification of sol-gel catalytic glassy electrodes made of a thin layer of organosilica doped with nitroxyl radical TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) crucially enhances stability in the waste-free oxidation of alcohols to carbonyls in water. Structural comparison between analogous films made of organosilica and unmodified SiO2 shows that the origin of the pronounced stable activity of the ORMOSIL film lies in high hydrophobic and also in the pronounced low degree of hydrophilicity.
Scanning electrochemical microscopy as a probe of Ag+ binding kinetics at Langmuir phospholipid monolayers
A new method has been developed for measuring local adsorption rates of metal ions at interfaces based on scanning electrochemical microscopy (SECM). The technique is illustrated with the example of Ag+ binding at Langmuir phospholipid monolayers formed at the water/air interface. Specifically, an inverted 25 microm diameter silver disc ultramicroelectrode (UME) was positioned in the subphase of a Langmuir trough, close to a dipalmitoyl phosphatidic acid (DPPA) monolayer, and used to generate Ag+ via Ag electro-oxidation. The method involved measuring the transient current-time response at the UME when the electrode was switched to a potential to electrogenerate Ag+. Since the Ag+/Ag couple…