0000000000241412

AUTHOR

Peter Pilewskie

Apparent absorption of solar spectral irradiance in heterogeneous ice clouds

[1] Coordinated flight legs of two aircraft above and below extended ice clouds played an important role in the Tropical Composition, Cloud and Climate Coupling Experiment (Costa Rica, 2007). The Solar Spectral Flux Radiometer measured up- and downward irradiance on the high-altitude (ER-2) and the low-altitude (DC-8) aircraft, which allowed deriving apparent absorption on a point-by-point basis along the flight track. Apparent absorption is the vertical divergence of irradiance, calculated from the difference of net flux at the top and bottom of a cloud. While this is the only practical method of deriving absorption from aircraft radiation measurements, it differs from true absorption when…

research product

Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects

[1] We present a new strategy to validate modeled spectral irradiance of shallow cumulus cloud fields in a polluted background with airborne measurements. The concept is based on a spectral distinction of effects associated with heterogeneous clouds, aerosol particles, and surface albedo. We use measurements from the Gulf of Mexico Atmospheric Composition and Climate Study, conducted in the urban-industrial Houston area. Modeled irradiance fields were obtained from extensive three-dimensional radiative transfer calculations applied to the output of large eddy simulations. We show that the measurements below clouds or cloud gaps can only be reproduced by the calculations when including the a…

research product

Impact of Crystal Habit on Cirrus Radiative Properties

The impact of assumed ice crystal morphology of subtropical cirrus on the solar and thermal infrared (IR) radiative field above, within, and below the cirrus is quantified. For this purpose airborne measurements of ice crystal size distribution from the CRYSTAL-FACE campaign and a library of optical properties of nonspherical ice crystal habits are implemented into radiative transfer simulations.Two cirrus cases are studied in detail: a high (cold) cirrus cloud with small visible optical thickness (τ≈1), and a lower (warmer) cirrus cloud of relatively large visible optical thickness (τ≈7). For t+he solar wavelength range the impact of shape characteristics of the crystals was important for …

research product

Effects of ice crystal habit on thermal infrared radiative properties and forcing of cirrus

[1] The impact of assumed ice crystal morphology on thermal infrared (IR) radiative properties of subtropical cirrus is quantified. In particular, the crystal-shape-dependent profiles of downwelling and upwelling thermal IR (broadband and spectral) irradiances and the radiative forcing of cirrus (at the top and bottom of the atmosphere) are investigated. For this purpose, airborne measurements of ice crystal size distribution (in terms of ice crystal maximum dimension) from the CRYSTAL-FACE campaign and a recently published library of thermal IR optical properties of nonspherical ice crystal habits are implemented into radiative transfer simulations. Two cirrus cases are studied in detail: …

research product

Comparing irradiance fields derived from Moderate Resolution Imaging Spectroradiometer airborne simulator cirrus cloud retrievals with solar spectral flux radiometer measurements

[1] During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment, the Moderate Resolution Imaging Spectroradiometer (MODIS) airborne simulator (MAS) and the solar spectral flux radiometer (SSFR) operated on the same aircraft, the NASA ER-2. While MAS provided two-dimensional horizontal fields of cloud optical thickness and effective ice particle radius, the SSFR measured spectral irradiance in the visible to near-infrared wavelength range (0.3–1.7 μm). The MAS retrievals, along with vertical profiles from a combined radar/lidar system on board the same aircraft were used to construct three-dimensional cloud fields, which were input into Monte Carlo ra…

research product

A new method to retrieve the aerosol layer absorption coefficient from airborne flux density and actinic radiation measurements

A new method is presented to derive the mean value of the spectral absorption coefficient of an aerosol layer from combined airborne measurements of spectral net irradiance and actinic flux density. While the method is based on a theoretical relationship of radiative transfer theory, it is applied to atmospheric radiation measurements for the first time. The data have been collected with the Spectral Modular Airborne Radiation Measurement System (SMARTA¢Â€ÂAlbedometer), the Solar Spectral Flux Radiometer (SSFR), and the Actinic Flux Spectroradiometer (AFSR) during four field campaigns between 2002 and 2008 (the Saharan Mineral Dust Experiment (SAMUM), the Influence of Clouds on the Spectra…

research product

Hyperspectral solar spectral measurements and applications

Measurements of hyperspectral solar irradiance from aircraft and satellite are applied to a variety of cloud and aerosol remote sensing, and radiative energy budget applications.

research product

Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators

Using three cloud generators, three-dimensional (3D) cloud fields are reproduced from microphysical cloud data measured in situ by aircraft. The generated cloud fields are used as input to a 3D radiative transfer model to calculate the corresponding fields of downward and upward irradiance, which are then compared with airborne and ground-based radiation measurements. One overcast stratocumulus scene and one broken cumulus scene were selected from the European INSPECTRO field experiment, which was held in Norwich, UK, in September 2002. With these data, the characteristics of the three different cloud reproduction techniques are assessed. Besides vertical profiles and histograms of measured…

research product