0000000000241414

AUTHOR

K. Sebastian Schmidt

showing 4 related works from this author

Apparent absorption of solar spectral irradiance in heterogeneous ice clouds

2010

[1] Coordinated flight legs of two aircraft above and below extended ice clouds played an important role in the Tropical Composition, Cloud and Climate Coupling Experiment (Costa Rica, 2007). The Solar Spectral Flux Radiometer measured up- and downward irradiance on the high-altitude (ER-2) and the low-altitude (DC-8) aircraft, which allowed deriving apparent absorption on a point-by-point basis along the flight track. Apparent absorption is the vertical divergence of irradiance, calculated from the difference of net flux at the top and bottom of a cloud. While this is the only practical method of deriving absorption from aircraft radiation measurements, it differs from true absorption when…

Atmospheric ScienceSpectral shape analysisIrradianceSoil ScienceAquatic ScienceOceanographyice cloud absorptionAtmosphereAtmospheric radiative transfer codesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)3-D radiative transferAbsorption (electromagnetic radiation)Physics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and TechnologyRemote sensingPhysicsEffective radiusRadiometerEcologyFernerkundung der AtmosphärePaleontologyForestryGeophysicsSpace and Planetary Sciencesolar spectral measurementsModerate-resolution imaging spectroradiometer
researchProduct

Comparing irradiance fields derived from Moderate Resolution Imaging Spectroradiometer airborne simulator cirrus cloud retrievals with solar spectral…

2007

[1] During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment, the Moderate Resolution Imaging Spectroradiometer (MODIS) airborne simulator (MAS) and the solar spectral flux radiometer (SSFR) operated on the same aircraft, the NASA ER-2. While MAS provided two-dimensional horizontal fields of cloud optical thickness and effective ice particle radius, the SSFR measured spectral irradiance in the visible to near-infrared wavelength range (0.3–1.7 μm). The MAS retrievals, along with vertical profiles from a combined radar/lidar system on board the same aircraft were used to construct three-dimensional cloud fields, which were input into Monte Carlo ra…

Atmospheric ScienceIrradianceSoil ScienceAstrophysics::Cosmology and Extragalactic AstrophysicsAquatic ScienceOceanographyPhysics::GeophysicsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Astrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic PhysicsSimulationEarth-Surface ProcessesWater Science and TechnologyRemote sensingEffective radiusIce cloudRadiometerEcologyIce crystalsPaleontologyForestryGeophysicsLidarSpace and Planetary ScienceEnvironmental scienceCirrusAstrophysics::Earth and Planetary AstrophysicsModerate-resolution imaging spectroradiometerJournal of Geophysical Research
researchProduct

A new method to retrieve the aerosol layer absorption coefficient from airborne flux density and actinic radiation measurements

2010

A new method is presented to derive the mean value of the spectral absorption coefficient of an aerosol layer from combined airborne measurements of spectral net irradiance and actinic flux density. While the method is based on a theoretical relationship of radiative transfer theory, it is applied to atmospheric radiation measurements for the first time. The data have been collected with the Spectral Modular Airborne Radiation Measurement System (SMARTA¢Â€ÂAlbedometer), the Solar Spectral Flux Radiometer (SSFR), and the Actinic Flux Spectroradiometer (AFSR) during four field campaigns between 2002 and 2008 (the Saharan Mineral Dust Experiment (SAMUM), the Influence of Clouds on the Spectra…

Atmospheric ScienceIrradianceSoil ScienceFluxAquatic ScienceOceanographySSFRTroposphereRadiative fluxAtmospheric radiative transfer codesGeochemistry and PetrologySMART‐AlbedometerEarth and Planetary Sciences (miscellaneous)Radiative transferOptical depthPhysics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and TechnologyRemote sensingARCTAS/ARCPACLidarRadiometerEcologyPaleontologyForestrySAMUMGeophysicsSpace and Planetary ScienceEnvironmental science
researchProduct

Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators

2007

Using three cloud generators, three-dimensional (3D) cloud fields are reproduced from microphysical cloud data measured in situ by aircraft. The generated cloud fields are used as input to a 3D radiative transfer model to calculate the corresponding fields of downward and upward irradiance, which are then compared with airborne and ground-based radiation measurements. One overcast stratocumulus scene and one broken cumulus scene were selected from the European INSPECTRO field experiment, which was held in Norwich, UK, in September 2002. With these data, the characteristics of the three different cloud reproduction techniques are assessed. Besides vertical profiles and histograms of measured…

Atmospheric SciencePixelMeteorologybusiness.industryFernerkundung der Atmosphärecloud generatorAutocorrelationIrradianceCloud computingradiationAtmospheric radiative transfer codesOvercastLiquid water contentRadiative transferEnvironmental sciencethree-dimensionalradiative transfer modelbusinessRemote sensing
researchProduct