0000000000241834

AUTHOR

Jean-christophe Bourin

showing 4 related works from this author

On the Russo-Dye Theorem for positive linear maps

2019

Abstract We revisit a classical result, the Russo-Dye Theorem, stating that every positive linear map attains its norm at the identity.

Discrete mathematicsNumerical AnalysisAlgebra and Number Theory010102 general mathematics010103 numerical & computational mathematics01 natural sciencesFunctional Analysis (math.FA)Linear mapMathematics - Functional Analysis47A30 15A60Norm (mathematics)FOS: MathematicsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsMathematics
researchProduct

Clarkson-McCarthy inequalities with unitary and isometry orbits

2020

Abstract A refinement of a trace inequality of McCarthy establishing the uniform convexity of the Schatten p-classes for p > 2 is proved: if A , B are two n-by-n matrices, then there exists some pair of n-by-n unitary matrices U , V such that U | A + B 2 | p U ⁎ + V | A − B 2 | p V ⁎ ≤ | A | p + | B | p 2 . A similar statement holds for compact Hilbert space operators. Another improvement of McCarthy's inequality is given via the new operator parallelogramm law, | A + B | 2 ⊕ | A − B | 2 = U 0 ( | A | 2 + | B | 2 ) U 0 ⁎ + V 0 ( | A | 2 + | B | 2 ) V 0 ⁎ for some pair of 2n-by-n isometry matrices U 0 , V 0 .

Trace (linear algebra)010103 numerical & computational mathematics01 natural sciencesUnitary stateConvexityCombinatoricssymbols.namesakeOperator (computer programming)FOS: MathematicsDiscrete Mathematics and Combinatorics0101 mathematicsMathematicsMathematics::Functional AnalysisNumerical AnalysisAlgebra and Number TheoryMathematics::Operator Algebras010102 general mathematicsHilbert spaceUnitary matrixMathematics::Spectral TheoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisIsometrysymbolsComputer Science::Programming LanguagesGeometry and TopologyLinear Algebra and its Applications
researchProduct

Positive linear maps on normal matrices

2018

For a positive linear map [Formula: see text] and a normal matrix [Formula: see text], we show that [Formula: see text] is bounded by some simple linear combinations in the unitary orbit of [Formula: see text]. Several elegant sharp inequalities are derived, for instance for the Schur product of two normal matrices [Formula: see text], [Formula: see text] for some unitary [Formula: see text], where the constant [Formula: see text] is optimal.

Pure mathematicsComputer Science::Information RetrievalGeneral Mathematics010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)010103 numerical & computational mathematics01 natural sciencesUnitary stateNormal matrixFunctional Analysis (math.FA)Mathematics - Functional AnalysisLinear mapSimple (abstract algebra)Bounded functionFOS: MathematicsComputer Science::General Literature0101 mathematicsOrbit (control theory)Linear combinationMathematicsInternational Journal of Mathematics
researchProduct

Numerical range and positive block matrices

2020

We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate, $$\begin{eqnarray}\text{diam}\,W\left(\left[\begin{array}{@{}cc@{}}A & X\\ X^{\ast } & B\end{array}\right]\right)-\text{diam}\,W\biggl(\frac{A+B}{2}\biggr)\geq 2d,\end{eqnarray}$$ between the diameters of the numerical ranges for the full matrix and its partial trace.

Partial traceGeneral Mathematics010102 general mathematicsMathematical analysis010103 numerical & computational mathematics01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisFull matrixBlock (programming)Norm (mathematics)FOS: Mathematics0101 mathematicsNumerical rangeEigenvalues and eigenvectorsMathematics
researchProduct