6533b859fe1ef96bd12b7885

RESEARCH PRODUCT

Numerical range and positive block matrices

Jean-christophe BourinEun-young Lee

subject

Partial traceGeneral Mathematics010102 general mathematicsMathematical analysis010103 numerical & computational mathematics01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisFull matrixBlock (programming)Norm (mathematics)FOS: Mathematics0101 mathematicsNumerical rangeEigenvalues and eigenvectorsMathematics

description

We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate, $$\begin{eqnarray}\text{diam}\,W\left(\left[\begin{array}{@{}cc@{}}A & X\\ X^{\ast } & B\end{array}\right]\right)-\text{diam}\,W\biggl(\frac{A+B}{2}\biggr)\geq 2d,\end{eqnarray}$$ between the diameters of the numerical ranges for the full matrix and its partial trace.

http://arxiv.org/abs/2004.07533