0000000000241873

AUTHOR

Gulizzi V.

Buckling analysis of multilayered structures using high-order theories and the implicit-mesh discontinuous Galerkin method

This work presents a novel formulation for the linear buckling analysis of multilayered shells. The formulation employs high-order Equivalent-Single-Layer (ESL) shell theories based on the through-the-thickness expansion of the covariant components of the displacement field, whilst the corresponding buckling problem is derived using the Euler’s method. The novelty of the formulation regards the solution of the governing equations, which is obtained via implicit-mesh discontinuous Galerkin (DG) schemes. The DG method is a high-order accurate numerical technique based on a discontinuous representation of the solution among the mesh elements and on the use of suitably defined boundary integral…

research product

A Model for high-cycle fatigue in polycrystals

A grain-scale formulation for high-cycle fatigue inter-granular degradation in polycrystalline aggregates is presented. The aggregate is represented through Voronoi tessellations and the mechanics of individual bulk grains is modelled using a boundary integral formulation. The inter-granular interfaces degrade under the action of cyclic tractions and they are represented using cohesive laws embodying a local irreversible damage parameter that evolves according to high- cycle continuum damage laws. The consistence between cyclic and static damage, which plays an important role in the redistribution of inter-granular tractions upon cyclic degradation, is assessed at each fatigue solution jump…

research product

Refined layer-wise models for nonlocal analysis of magneto-electro-elastic plates

Size-dependent theories of continuum mechanics are an important tool for structural and material modeling in engineering applications, with particular regard to those involving micro- and nano-scales. Among various approaches proposed in the literature to account for the effect of the microstructure via continuum models, the Eringen’s nonlocal elasticity model incorporates important features of material behavior via a differential stress-strain relationship involving a scale coefficient, or characteristic length, depending on the material microstructure [1]. In the framework of Eringen’s nonlocal elasticity, plate theories have been reformulated for homogeneous and multilayered configuratio…

research product

A model for low-cycle fatigue in micro-structured materials

A microscale formulation for low-cycle fatigue degradation in heterogeneous materials is presented. The interface traction-separation law is modelled by a cohesive zone model for low-cycle fatigue analysis, which is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variables. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the static failure condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behaviour without any fatigue degradation for low levels of cyclic tra…

research product