0000000000241875

AUTHOR

Naseer Shahzad

showing 2 related works from this author

Best proximity point theorems for proximal cyclic contractions

2017

The purpose of this article is to compute a global minimizer of the function $$x\longrightarrow d(x, Tx)$$ , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation $$Tx=x$$ when T is not necessarily a self-mapping.

021103 operations researchProximal cyclic contractionApplied Mathematics010102 general mathematicsMathematical analysisBest proximity point0211 other engineering and technologies02 engineering and technologyFunction (mathematics)Fixed pointTopology01 natural sciencesComplete metric spaceCyclic contractionSettore MAT/05 - Analisi MatematicaModeling and SimulationPoint (geometry)Global minimizationGeometry and Topology0101 mathematicsApproximate solutionMathematics
researchProduct

Best Proximity Points for Some Classes of Proximal Contractions

2013

Given a self-mapping g: A → A and a non-self-mapping T: A → B, the aim of this work is to provide sufficient conditions for the existence of a unique point x ∈ A, called g-best proximity point, which satisfies d g x, T x = d A, B. In so doing, we provide a useful answer for the resolution of the nonlinear programming problem of globally minimizing the real valued function x → d g x, T x, thereby getting an optimal approximate solution to the equation T x = g x. An iterative algorithm is also presented to compute a solution of such problems. Our results generalize a result due to Rhoades (2001) and hence such results provide an extension of Banach's contraction principle to the case of non-s…

Mathematical optimizationmetric spacesArticle SubjectIterative methodApplied Mathematicslcsh:MathematicsWork (physics)proximal contractionbest proximity pointExtension (predicate logic)Resolution (logic)lcsh:QA1-939Nonlinear programmingReal-valued functionPoint (geometry)Settore MAT/03 - GeometriaContraction principleAnalysisMathematicsAbstract and Applied Analysis
researchProduct