0000000000241925

AUTHOR

Giusi Castiglione

Enumeration of L-convex polyominoes by rows and columns

In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once.Using the ECO method, we prove that the number fn of L-convex polyominoes with perimeter 2(n + 2) satisfies the rational recurrence relation fn = 4fn-1 - 2fn-2, with f0 = 1, f1 = 2, f2 = 7. Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems.

research product

A reconstruction algorithm for L-convex polyominoes

AbstractWe give an algorithm that uniquely reconstruct an L-convex polyomino from the size of some special paths, called bordered L-paths.

research product

On the Shuffle of Star-Free Languages

Motivated by the general problem to characterize families of languages closed under shuffle, we investigate some conditions under which the shuffle of two star-free languages is star-free. Some of the special cases here approached give rise to new problems in combinatorics on words.

research product

On a class of languages with holonomic generating functions

We define a class of languages (RCM) obtained by considering Regular languages, linear Constraints on the number of occurrences of symbols and Morphisms. The class RCM presents some interesting closure properties, and contains languages with holonomic generating functions. As a matter of fact, RCM is related to one-way 1-reversal bounded k-counter machines and also to Parikh automata on letters. Indeed, RCM is contained in L-NFCM but not in L-DFCM, and strictly includes L-CPA. We conjecture that L-DFCM subset of RCM

research product

Nondeterministic Moore automata and Brzozowski's minimization algorithm

AbstractMoore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. We propose an algorithm that is a variant of Brzozowski’s minimization algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice. Moreover, we explore more general classes of NMA and analyze the applicability of the algorithm. For some of such classes the algorith…

research product

On extremal cases of Hopcroft’s algorithm

AbstractIn this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different executions that can lead to different sequences of refinements of the set of the states up to the final partition. We find an infinite family of binary automata for which such a process is unique, whatever strategy is chosen. Some recent papers (cf. Berstel and Carton (2004) [3], Castiglione et al. (2008) [6] and Berstel et al. (2009) [1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata as…

research product

Combinatorial aspects of L-convex polyominoes

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …

research product

A Tomographical Characterization of L-convex Polyominoes

Our main purpose is to characterize the class of L-convex polyominoes introduced in [3] by means of their horizontal and vertical projections. The achieved results allow an answer to one of the most relevant questions in tomography i.e. the uniqueness of discrete sets, with respect to their horizontal and vertical projections. In this paper, by giving a characterization of L-convex polyominoes, we investigate the connection between uniqueness property and unimodality of vectors of horizontal and vertical projections. In the last section we consider the continuum environment; we extend the definition of L-convex set, and we obtain some results analogous to those for the discrete case.

research product

Hopcroft's algorithm and tree-like automata

Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…

research product

Hopcroft’s Algorithm and Cyclic Automata

Minimization of deterministic finite automata is a largely studied problem of the Theory of Automata and Formal Languages. It consists in finding the unique (up to isomorphism) minimal deterministic automaton recognizing a set of words. The first approaches to this topic can be traced back to the 1950’s with the works of Huffman and Moore (cf. [12,15]). Over the years several methods to solve this problem have been proposed but the most efficient algorithm in the worst case was given by Hopcroft in [11]. Such an algorithm computes in O(n log n) the minimal automaton equivalent to a given automaton with n states. The Hopcroft’s algorithm has been widely studied, described and implemented by …

research product

Patterns in words and languages

AbstractA word p, over the alphabet of variables E, is a pattern of a word w over A if there exists a non-erasing morphism h from E∗ to A∗ such that h(p)=w. If we take E=A, given two words u,v∈A∗, we write u⩽v if u is a pattern of v. The restriction of ⩽ to aA∗, where A is the binary alphabet {a,b}, is a partial order relation. We introduce, given a word v, the set P(v) of all words u such that u⩽v. P(v), with the relation ⩽, is a poset and it is called the pattern poset of v. The first part of the paper is devoted to investigate the relationships between the structure of the poset P(v) and the combinatorial properties of the word v. In the last section, for a given language L, we consider …

research product

Recognizable picture languages and polyominoes

We consider the problem of recognizability of some classes of polyominoes in the theory of picture languages. In particular we focus our attention oil the problem posed by Matz of finding a non-recognizable picture language for which his technique for proving the non-recognizability of picture languages fails. We face the problem by studying the family of L-convex polyominoes and some closed families that are similar to the recognizable family of all polyominoes but result to be non-recognizable. Furthermore we prove that the family of L-convex polyominoes satisfies the necessary condition given by Matz for the recognizability and we conjecture that the family of L-convex polyominoes is non…

research product

Standard Sturmian words and automata minimization algorithms

The study of some close connections between the combinatorial properties of words and the performance of the automata minimization process constitutes the main focus of this paper. These relationships have been, in fact, the basis of the study of the tightness and the extremal cases of Hopcroft's algorithm, that is, up to now, the most efficient minimization method for deterministic finite state automata. Recently, increasing attention has been paid to another minimization method that, unlike the approach proposed by Hopcroft, is not based on refinement of the set of states of the automaton, but on automata operations such as determinization and reverse, and is also applicable to non-determ…

research product

On Extremal Cases of Hopcroft’s Algorithm

In this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different sequences of refinements of the set of the states that lead to the final partition. We find an infinite family of binary automata for which such a process is unique. Some recent papers (cf. [3,7,1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata associated to circular words. However, automata minimization can be achieved also in linear time when the alphabet has only one letter (cf. [14]), so in …

research product

An Efficient Algorithm for the Generation of Z-Convex Polyominoes

We present a characterization of Z-convex polyominoes in terms of pairs of suitable integer vectors. This lets us design an algorithm which generates all Z-convex polyominoes of size n in constant amortized time.

research product

Nondeterministic Moore Automata and Brzozowski’s Algorithm

Moore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. In this paper we propose an algorithm that is a variant of Brzozowski's algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice.

research product

On the exhaustive generation of k-convex polyominoes

The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.

research product

Circular sturmian words and Hopcroft’s algorithm

AbstractIn order to analyze some extremal cases of Hopcroft’s algorithm, we investigate the relationships between the combinatorial properties of a circular sturmian word (x) and the run of the algorithm on the cyclic automaton Ax associated to (x). The combinatorial properties of words taken into account make use of sturmian morphisms and give rise to the notion of reduction tree of a circular sturmian word. We prove that the shape of this tree uniquely characterizes the word itself. The properties of the run of Hopcroft’s algorithm are expressed in terms of the derivation tree of the automaton, which is a tree that represents the refinement process that, in the execution of Hopcroft’s alg…

research product

Ordering and Convex Polyominoes

We introduce a partial order on pictures (matrices), denoted by ≼ that extends to two dimensions the subword ordering on words. We investigate properties of special families of discrete sets (corresponding to {0,1}-matrices) with respect to this partial order. In particular we consider the families of polyominoes and convex polyominoes and the family, recently introduced by the authors, of L-convex polyominoes. In the first part of the paper we study the closure properties of such families with respect to the order. In particular we obtain a new characterization of L-convex polyominoes: a discrete set P is a L-convex polyomino if and only if all the elements Q≼P are polyominoes. In the seco…

research product

Epichristoffel Words and Minimization of Moore Automata

This paper is focused on the connection between the combinatorics of words and minimization of automata. The three main ingredients are the epichristoffel words, Moore automata and a variant of Hopcroft's algorithm for their minimization. Epichristoffel words defined in [14] generalize some properties of circular sturmian words. Here we prove a factorization property and the existence of the reduction tree, that uniquely identifies the structure of the word. Furthermore, in the paper we investigate the problem of the minimization of Moore automata by defining a variant of Hopcroft's minimization algorithm. The use of this variant makes simpler the computation of the running time and consequ…

research product

A challenging family of automata for classical minimization algorithms

In this paper a particular family of deterministic automata that was built to reach the worst case complexity of Hopcroft's state minimization algorithm is considered. This family is also challenging for the two other classical minimization algorithms: it achieves the worst case for Moore's algorithm, as a consequence of a result by Berstel et al., and is of at least quadratic complexity for Brzozowski's solution, which is our main contribution. It therefore constitutes an interesting family, which can be useful to measure the efficiency of implementations of well-known or new minimization algorithms.

research product