0000000000241925

AUTHOR

Giusi Castiglione

showing 21 related works from this author

Enumeration of L-convex polyominoes by rows and columns

2005

In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once.Using the ECO method, we prove that the number fn of L-convex polyominoes with perimeter 2(n + 2) satisfies the rational recurrence relation fn = 4fn-1 - 2fn-2, with f0 = 1, f1 = 2, f2 = 7. Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems.

Discrete mathematicsRecurrence relationECO methodGeneral Computer SciencePolyominoGenerating functionRegular polygonRow and column spacesTheoretical Computer ScienceInterpretation (model theory)Generating functionsCombinatoricsSection (fiber bundle)Path (graph theory)Convex polyominoesComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

A reconstruction algorithm for L-convex polyominoes

2006

AbstractWe give an algorithm that uniquely reconstruct an L-convex polyomino from the size of some special paths, called bordered L-paths.

CombinatoricsConvexityMathematics::CombinatoricsGeneral Computer SciencePolyominoPolyominoesRegular polygonReconstruction algorithmReconstructionComputer Science(all)Theoretical Computer ScienceMathematicsTheoretical Computer Science
researchProduct

On the Shuffle of Star-Free Languages

2012

Motivated by the general problem to characterize families of languages closed under shuffle, we investigate some conditions under which the shuffle of two star-free languages is star-free. Some of the special cases here approached give rise to new problems in combinatorics on words.

Discrete mathematicsAlgebra and Number TheorySettore INF/01 - Informaticapure submonoidGeneral problemAbstract family of languagesRegular languageComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Star (graph theory)star-free languageCone (formal languages)shuffle of languagePumping lemma for regular languagesTheoretical Computer ScienceCombinatorics on wordsComputational Theory and MathematicsRegular languagecombinatorics on words.Information SystemsMathematicsFundamenta Informaticae
researchProduct

On a class of languages with holonomic generating functions

2017

We define a class of languages (RCM) obtained by considering Regular languages, linear Constraints on the number of occurrences of symbols and Morphisms. The class RCM presents some interesting closure properties, and contains languages with holonomic generating functions. As a matter of fact, RCM is related to one-way 1-reversal bounded k-counter machines and also to Parikh automata on letters. Indeed, RCM is contained in L-NFCM but not in L-DFCM, and strictly includes L-CPA. We conjecture that L-DFCM subset of RCM

Class (set theory)Holonomic functionsGeneral Computer Science0102 computer and information sciences02 engineering and technologyContext free language01 natural sciencesTheoretical Computer ScienceMorphismRegular language0202 electrical engineering electronic engineering information engineeringParikh vectorMathematicsDiscrete mathematicsk-counter machineHolonomic functionConjecturek-counter machinesSettore INF/01 - InformaticaHolonomicParikh automataComputer Science (all)Context-free languageParikh vectorsAlgebraContext free languagesClosure (mathematics)010201 computation theory & mathematicsBounded function020201 artificial intelligence & image processingHolonomic functions; Parikh vectors; Context free languages; k-counter machines; Parikh automata
researchProduct

Nondeterministic Moore automata and Brzozowski's minimization algorithm

2012

AbstractMoore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. We propose an algorithm that is a variant of Brzozowski’s minimization algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice. Moreover, we explore more general classes of NMA and analyze the applicability of the algorithm. For some of such classes the algorith…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral Computer ScienceBrzozowski’s minimization algorithmSettore INF/01 - InformaticaPowerset constructionAutomata minimizationBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceNondeterministic algorithmDeterministic finite automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationDeterministic automatonTwo-way deterministic finite automatonNondeterministic finite automatonBrzozowski's minimization algorithmComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsNondeterministic Moore automata
researchProduct

On extremal cases of Hopcroft’s algorithm

2010

AbstractIn this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different executions that can lead to different sequences of refinements of the set of the states up to the final partition. We find an infinite family of binary automata for which such a process is unique, whatever strategy is chosen. Some recent papers (cf. Berstel and Carton (2004) [3], Castiglione et al. (2008) [6] and Berstel et al. (2009) [1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata as…

Discrete mathematicsFinite-state machineGeneral Computer ScienceUnary operationWord treesStandard treesAutomatonTheoretical Computer ScienceCombinatoricsDeterministic finite automatonDFA minimizationDeterministic automatonHopcroft’s minimization algorithmTree automatonDeterministic finite state automataTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Combinatorial aspects of L-convex polyominoes

2007

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …

Discrete mathematicsClass (set theory)Mathematics::CombinatoricsPolyominoEnumerationOpen problemGenerating functionRegular polygonPolyominoesNatural numberComputer Science::Computational GeometryFormal SeriesCombinatoricsCardinalityRegular languageDiscrete Mathematics and CombinatoricsTomographyAlgorithmsbinary tomographyMathematicsEnumeration; Formal Series; PolyominoesEuropean Journal of Combinatorics
researchProduct

A Tomographical Characterization of L-convex Polyominoes

2005

Our main purpose is to characterize the class of L-convex polyominoes introduced in [3] by means of their horizontal and vertical projections. The achieved results allow an answer to one of the most relevant questions in tomography i.e. the uniqueness of discrete sets, with respect to their horizontal and vertical projections. In this paper, by giving a characterization of L-convex polyominoes, we investigate the connection between uniqueness property and unimodality of vectors of horizontal and vertical projections. In the last section we consider the continuum environment; we extend the definition of L-convex set, and we obtain some results analogous to those for the discrete case.

Pure mathematicsInteger VectorHorizontal and verticalPolyominoDiscrete TomographyConvex setDiscrete geometryUnimodalityConnection (mathematics)Vertical ProjectionContinuum CounterpartMonotone PathUniquenessDiscrete tomographyMathematics
researchProduct

Hopcroft's algorithm and tree-like automata

2011

Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…

Discrete mathematicsNested wordSettore INF/01 - InformaticaGeneral MathematicsAutomata minimizationω-automatonHopcroft's algorithmComputer Science ApplicationsCombinatoricsDeterministic finite automatonDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataAutomata theoryword treesAlgorithmComputer Science::Formal Languages and Automata TheorySoftwareMathematics
researchProduct

Hopcroft’s Algorithm and Cyclic Automata

2008

Minimization of deterministic finite automata is a largely studied problem of the Theory of Automata and Formal Languages. It consists in finding the unique (up to isomorphism) minimal deterministic automaton recognizing a set of words. The first approaches to this topic can be traced back to the 1950’s with the works of Huffman and Moore (cf. [12,15]). Over the years several methods to solve this problem have been proposed but the most efficient algorithm in the worst case was given by Hopcroft in [11]. Such an algorithm computes in O(n log n) the minimal automaton equivalent to a given automaton with n states. The Hopcroft’s algorithm has been widely studied, described and implemented by …

Discrete mathematicsNested wordSettore INF/01 - InformaticaComputer scienceTimed automatonSturmian wordsω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesHopcroft's algorithmCombinatoricsDFA minimizationDeterministic automatonAutomata theoryQuantum finite automataNondeterministic finite automatonAlgorithmComputer Science::Formal Languages and Automata Theory
researchProduct

Patterns in words and languages

2004

AbstractA word p, over the alphabet of variables E, is a pattern of a word w over A if there exists a non-erasing morphism h from E∗ to A∗ such that h(p)=w. If we take E=A, given two words u,v∈A∗, we write u⩽v if u is a pattern of v. The restriction of ⩽ to aA∗, where A is the binary alphabet {a,b}, is a partial order relation. We introduce, given a word v, the set P(v) of all words u such that u⩽v. P(v), with the relation ⩽, is a poset and it is called the pattern poset of v. The first part of the paper is devoted to investigate the relationships between the structure of the poset P(v) and the combinatorial properties of the word v. In the last section, for a given language L, we consider …

PatternApplied MathematicsPartial order on wordStructure (category theory)Set (abstract data type)CombinatoricsFormal languagesSection (category theory)MorphismRegular languagePartial order on wordsDiscrete Mathematics and CombinatoricsOrder (group theory)Partially ordered setWord (group theory)MathematicsDiscrete Applied Mathematics
researchProduct

Recognizable picture languages and polyominoes

2007

We consider the problem of recognizability of some classes of polyominoes in the theory of picture languages. In particular we focus our attention oil the problem posed by Matz of finding a non-recognizable picture language for which his technique for proving the non-recognizability of picture languages fails. We face the problem by studying the family of L-convex polyominoes and some closed families that are similar to the recognizable family of all polyominoes but result to be non-recognizable. Furthermore we prove that the family of L-convex polyominoes satisfies the necessary condition given by Matz for the recognizability and we conjecture that the family of L-convex polyominoes is non…

Discrete mathematicsConjecturePolyominoSettore INF/01 - InformaticaPolyominoesFace (sociological concept)Picture languageFocus (linguistics)Mathematics
researchProduct

Standard Sturmian words and automata minimization algorithms

2015

The study of some close connections between the combinatorial properties of words and the performance of the automata minimization process constitutes the main focus of this paper. These relationships have been, in fact, the basis of the study of the tightness and the extremal cases of Hopcroft's algorithm, that is, up to now, the most efficient minimization method for deterministic finite state automata. Recently, increasing attention has been paid to another minimization method that, unlike the approach proposed by Hopcroft, is not based on refinement of the set of states of the automaton, but on automata operations such as determinization and reverse, and is also applicable to non-determ…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordFinite-state machineGeneral Computer ScienceAutomata minimizationComputer Science (all)ω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesStandard Sturmian wordTheoretical Computer ScienceAutomatonCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationAutomata theoryQuantum finite automataBrzozowski's minimization algorithmTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryMathematicsTheoretical Computer Science
researchProduct

On Extremal Cases of Hopcroft’s Algorithm

2009

In this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different sequences of refinements of the set of the states that lead to the final partition. We find an infinite family of binary automata for which such a process is unique. Some recent papers (cf. [3,7,1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata associated to circular words. However, automata minimization can be achieved also in linear time when the alphabet has only one letter (cf. [14]), so in …

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaUnary operationBinary numberHopcroft's algorithmNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonCombinatoricsSet (abstract data type)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonDFA minimizationMinificationAlgorithmTime complexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

An Efficient Algorithm for the Generation of Z-Convex Polyominoes

2014

We present a characterization of Z-convex polyominoes in terms of pairs of suitable integer vectors. This lets us design an algorithm which generates all Z-convex polyominoes of size n in constant amortized time.

Discrete mathematicsAmortized analysisMathematics::CombinatoricsSettore INF/01 - InformaticaPolyominoEfficient algorithmRegular polygonComputer Science::Computational GeometryCharacterization (mathematics)CombinatoricsIntegerComputer Science::Discrete MathematicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYConstant (mathematics)TetrominoZ-convex polyominoes generation.Mathematics
researchProduct

Nondeterministic Moore Automata and Brzozowski’s Algorithm

2011

Moore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. In this paper we propose an algorithm that is a variant of Brzozowski's algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaPowerset constructionBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonDFA minimizationDeterministic automatonTwo-way deterministic finite automatonMoore automata minimization Brzozowski'algorithmNondeterministic finite automatonAlgorithmComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On the exhaustive generation of k-convex polyominoes

2017

The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.

General Computer SciencePolyomino0102 computer and information sciences02 engineering and technologyComputer Science::Computational Geometry01 natural sciencesConvexityTheoretical Computer ScienceCombinatoricsCAT algorithmIntegerExhaustive generation0202 electrical engineering electronic engineering information engineeringConvex polyominoeConvexity K-convex polyominoes.Convex polyominoesComputer Science::DatabasesMathematicsDiscrete mathematicsAmortized analysisMathematics::CombinatoricsDegree (graph theory)Settore INF/01 - InformaticaComputer Science (all)Regular polygonMonotone polygon010201 computation theory & mathematicsPath (graph theory)020201 artificial intelligence & image processingCAT algorithms; Convex polyominoes; Exhaustive generation;CAT algorithms
researchProduct

Circular sturmian words and Hopcroft’s algorithm

2009

AbstractIn order to analyze some extremal cases of Hopcroft’s algorithm, we investigate the relationships between the combinatorial properties of a circular sturmian word (x) and the run of the algorithm on the cyclic automaton Ax associated to (x). The combinatorial properties of words taken into account make use of sturmian morphisms and give rise to the notion of reduction tree of a circular sturmian word. We prove that the shape of this tree uniquely characterizes the word itself. The properties of the run of Hopcroft’s algorithm are expressed in terms of the derivation tree of the automaton, which is a tree that represents the refinement process that, in the execution of Hopcroft’s alg…

Discrete mathematicsReduction (recursion theory)Fibonacci numberGeneral Computer ScienceHopcroft'algorithmSturmian wordSturmian wordSturmian morphismsTheoretical Computer ScienceCombinatoricsTree (descriptive set theory)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Discrete MathematicsDeterministic automatonHopcroft’s minimization algorithmCircular sturmian wordsTree automatonDeterministic finite state automataTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science(all)MathematicsTheoretical Computer Science
researchProduct

Ordering and Convex Polyominoes

2005

We introduce a partial order on pictures (matrices), denoted by ≼ that extends to two dimensions the subword ordering on words. We investigate properties of special families of discrete sets (corresponding to {0,1}-matrices) with respect to this partial order. In particular we consider the families of polyominoes and convex polyominoes and the family, recently introduced by the authors, of L-convex polyominoes. In the first part of the paper we study the closure properties of such families with respect to the order. In particular we obtain a new characterization of L-convex polyominoes: a discrete set P is a L-convex polyomino if and only if all the elements Q≼P are polyominoes. In the seco…

Discrete mathematicsMathematics::CombinatoricsPolyominoBinary relationRegular polygonConvex setDiscrete geometryMonotonic functionPartial OrderComputer Science::Computational GeometryMonotone FunctionCombinatoricsClosure PropertyBinary RelationFormal Language TheoryClosure (mathematics)Computer Science::Discrete MathematicsPartially ordered setComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Epichristoffel Words and Minimization of Moore Automata

2014

This paper is focused on the connection between the combinatorics of words and minimization of automata. The three main ingredients are the epichristoffel words, Moore automata and a variant of Hopcroft's algorithm for their minimization. Epichristoffel words defined in [14] generalize some properties of circular sturmian words. Here we prove a factorization property and the existence of the reduction tree, that uniquely identifies the structure of the word. Furthermore, in the paper we investigate the problem of the minimization of Moore automata by defining a variant of Hopcroft's minimization algorithm. The use of this variant makes simpler the computation of the running time and consequ…

Discrete mathematicsAlgebra and Number TheoryReduction (recursion theory)Structure (category theory)Tree (graph theory)Theoretical Computer ScienceAutomatonCombinatoricsComputational Theory and MathematicsDFA minimizationFactorizationMinificationComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Information SystemsMathematicsFundamenta Informaticae
researchProduct

A challenging family of automata for classical minimization algorithms

2010

In this paper a particular family of deterministic automata that was built to reach the worst case complexity of Hopcroft's state minimization algorithm is considered. This family is also challenging for the two other classical minimization algorithms: it achieves the worst case for Moore's algorithm, as a consequence of a result by Berstel et al., and is of at least quadratic complexity for Brzozowski's solution, which is our main contribution. It therefore constitutes an interesting family, which can be useful to measure the efficiency of implementations of well-known or new minimization algorithms.

Mathematical optimizationComputer science[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciences02 engineering and technology01 natural sciencesMeasure (mathematics)Classical Minimization AlgorithmAutomatonRegular languageDFA minimization010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringWorst-case complexity020201 artificial intelligence & image processingMinificationState (computer science)AlgorithmComputer Science::Formal Languages and Automata TheoryComputingMilieux_MISCELLANEOUS
researchProduct