0000000000242029

AUTHOR

Lucia Hackermüller

0000-0001-9880-2914

showing 6 related works from this author

Theory and experimental verification of Kapitza–Dirac–Talbot–Lau interferometry

2009

Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established for demonstrating the quantum wave nature of large molecules. A phase space treatment permits us to derive closed equations for the near-field interference pattern, as well as for the Moire-type pattern that would arise if the molecules were to be treated as classical particles. The model provides a simple and elegant way to account for the molecular phase shifts related to the optical dipole potential as well as for the incoherent effect of photon absorption at the second grating. We present experimental results for different molecular masses, polarizabilities and absorption cross sections using fullerenes and fl…

PhysicsQuantum PhysicsPhotonDirac (software)Phase (waves)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyGrating021001 nanoscience & nanotechnology01 natural sciencesInterferometryDipoleQuantum mechanicsPhase space0103 physical sciencesPhysics - Atomic and Molecular ClustersQuantum Physics (quant-ph)Atomic and Molecular Clusters (physics.atm-clus)010306 general physics0210 nano-technologyQuantumNew Journal of Physics
researchProduct

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

2012

The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.

Condensed Matter::Quantum GasesPhysicsOptical latticeHubbard modelCondensed matter physicsHomogeneousQuantum gasUltracold atomQuantum mechanicsGeneral Physics and AstronomyElectronLattice model (physics)Nature Physics
researchProduct

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

2008

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …

PhysicsCondensed Matter::Quantum GasesOptical latticeMultidisciplinaryStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelCondensed matter physicsFOS: Physical sciencesFermionsymbols.namesakeCondensed Matter - Strongly Correlated ElectronsMean field theorysymbolsStrongly correlated materialCondensed Matter::Strongly Correlated ElectronsFermi liquid theoryMetal–insulator transitionHamiltonian (quantum mechanics)
researchProduct

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

2010

Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that higher order multi-body interactions could give rise to novel quantum phases with intriguing properties. This paper demonstrates effective six-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice. The coherent multi-particle interactions observed here open a new window for simulations of effective field theories and may help to enable the realization of novel topologically ordered many-body quantum phases. Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that …

PhysicsQuantum phase transitionOpen quantum systemMultidisciplinaryQuantum dynamicsQuantum mechanicsPrincipal quantum numberCavity quantum electrodynamicsQuantum simulatorQuantum phasesQuantum numberNature
researchProduct

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

2010

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

Condensed Matter::Quantum GasesPhysicsOptical latticeMultidisciplinaryCondensed matter physicsHubbard modelIsentropic processStrongly Correlated Electrons (cond-mat.str-el)High Energy Physics::LatticeFOS: Physical sciencesBose–Hubbard modelCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Quantum mechanicsLattice (order)Condensed Matter - Quantum GasesQuantum
researchProduct

A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules

2007

Research on matter waves is a thriving field of quantum physics and has recently stimulated many investigations with electrons, neutrons, atoms, Bose-condensed ensembles, cold clusters and hot molecules. Coherence experiments with complex objects are of interest for exploring the transition to classical physics, for measuring molecular properties and they have even been proposed for testing new models of space-time. For matter-wave experiments with complex molecules, the strongly dispersive effect of the interaction between the diffracted molecule and the grating wall is a major challenge because it imposes enormous constraints on the velocity selection of the molecular beam. We here descri…

PhysicsDiffractionQuantum PhysicsGeneral Physics and AstronomyFOS: Physical sciencesGratingInterferometryPolarizabilityPhase gratingQuantum mechanicsMoleculeMatter waveQuantum Physics (quant-ph)Coherence (physics)
researchProduct