Revealing community structures by ensemble clustering using group diffusion
We propose an ensemble clustering approach using group diffusion to reveal community structures in data. We represent data points as a directed graph and assume each data point belong to single cluster membership instead of multiple memberships. The method is based on the concept of ensemble group diffusion with a parameter to represent diffusion depth in clustering. The ability to modulate the diffusion-depth parameter by varying it within a certain interval allows for more accurate construction of clusters. Depending on the value of the diffusion-depth parameter, the presented approach can determine very well both local clusters and global structure of data. At the same time, the ability …