0000000000242573

AUTHOR

L. Krzemien

showing 4 related works from this author

Production and detection of atomic hexadecapole at Earth's magnetic field

2007

Anisotropy of atomic states is characterized by population differences and coherences between Zeeman sublevels. It can be efficiently created and probed via resonant interactions with light, the technique which is at the heart of modern atomic clocks and magnetometers. Recently, nonlinear magneto-optical techniques have been developed for selective production and detection of higher polarization moments, hexadecapole and hexacontatetrapole, in the ground states of the alkali atoms. Extension of these techniques into the range of geomagnetic fields is important for practical applications. This is because hexadecapole polarization corresponding to the $\Delta M=4$ Zeeman coherence, with maxim…

Angular momentumLightEarth PlanetMagnetometerAtomic Physics (physics.atom-ph)TransducersPopulationFOS: Physical sciencesRadiation Dosagelaw.inventionPhysics - Atomic PhysicsMagneticssymbols.namesakelawPhysical Sciences and MathematicsScattering RadiationComputer SimulationPhysics::Atomic PhysicsRadiometryAnisotropyeducationPhysicseducation.field_of_studyZeeman effectEquipment DesignModels TheoreticalPolarization (waves)Atomic and Molecular Physics and OpticsAtomic clockMagnetic fieldEquipment Failure AnalysisBudker [BRII recipient]symbolsComputer-Aided DesignAtomic physicsEnvironmental Monitoring
researchProduct

Laser frequency stabilization by magnetically assisted rotation spectroscopy

2011

Abstract We present a method of Doppler-free laser frequency stabilization based on magnetically assisted rotation spectroscopy (MARS) which combines the Doppler-free velocity-selective optical pumping (VSOP) and magnetic rotation spectroscopy. The stabilization is demonstrated for the atomic rubidium transitions at 780 nm. The proposed method is largely independent of stray magnetic fields and does not require any modulation of the laser frequency. Moreover, the discussed method allows one to choose between locking the laser exactly to the line center, or with a magnetically-controlled shift to an arbitrary frequency detuned by up to several natural linewidths. This feature is useful in ma…

Materials sciencebusiness.industrychemistry.chemical_elementRotationLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsRubidiumMagnetic fieldlaw.inventionOptical pumpingOpticschemistryModulationlawLaser coolingPhysics::Atomic PhysicsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessSpectroscopyOptics Communications
researchProduct

Production and detection of atomic hexadecapole at Earth’s magnetic field

2007

We report a novel method that allows selective creation and detection of a macroscopic long lived hexadecapole polarization in the F = 2 ground state of 87Rb atoms at Earth's magnetic field (510 mG).

PhysicsEarth's magnetic fieldchemistryNonlinear opticschemistry.chemical_elementAtomic physicsGround statePolarization (waves)Magnetic fieldRubidiumFrontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion
researchProduct

Optimal geometry for efficient loading of an optical dipole trap

2009

One important factor which determines efficiency of loading cold atoms into an optical dipole trap from a magneto-optical trap is the distance between the trap centers. By studying this efficiency for various optical trap depths (2--110 mK) we find that for optimum dipole trap loading, longitudinal displacements up to 15 mm are necessary. An explanation for this observation is presented and compared with other work and a simple analytical formula is derived for the optimum distance between the trap centers.

PhysicsTrap (computing)Condensed Matter::Quantum GasesDipoleWork (thermodynamics)Atomic Physics (physics.atom-ph)Magnetic trapFOS: Physical sciencesPhysics::Atomic PhysicsAtomic physicsAtomic and Molecular Physics and OpticsImaging phantomPhysics - Atomic Physics
researchProduct