0000000000242737
AUTHOR
Jochen S. Hub
Thermodynamics of hydronium and hydroxide surface solvation.
[Introduction] The concentration of hydronium and hydroxide at the water-air interface has been under debate for a long time. Recent evidence from a range of experiments and theoretical calculations strongly suggests the water surface is somewhat acidic. Using novel polarizable models we have performed potential of mean force calculations of a hydronium ion, a hydroxide ion and a water molecule in a water droplet and a water slab and we were able to rationalize that hydronium, but not hydroxide, is slightly enriched at the surface for two reasons. First, because the hydrogen-bond acceptance capacity of hydronium is weaker than water it is more favorable to have the hydronium oxygen on the s…
Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge
Ewald summation, which has become the de facto standard for computing electrostatic interactions in biomolecular simulations, formally requires that the simulation box is neutral. For non-neutral systems the Ewald algorithm implicitly introduces a uniform background charge distribution that e ectively neutralizes the simulation box. Because a uniform distribution of counter charges typically deviates from the spatial distribution of counterions in real systems, artifacts may arise, in particular in systems with an inhomogeneous dielectric constant. Here we derive an analytical expression for the e ect of using an implicit background charge instead of explicit counterions, on the chemical po…