0000000000242739

AUTHOR

Maarten G. Wolf

Thermodynamics of hydronium and hydroxide surface solvation.

[Introduction] The concentration of hydronium and hydroxide at the water-air interface has been under debate for a long time. Recent evidence from a range of experiments and theoretical calculations strongly suggests the water surface is somewhat acidic. Using novel polarizable models we have performed potential of mean force calculations of a hydronium ion, a hydroxide ion and a water molecule in a water droplet and a water slab and we were able to rationalize that hydronium, but not hydroxide, is slightly enriched at the surface for two reasons. First, because the hydrogen-bond acceptance capacity of hydronium is weaker than water it is more favorable to have the hydronium oxygen on the s…

research product

Anomalous surface diffusion of protons on lipid membranes.

AbstractThe cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive re…

research product

Explicit proton transfer in classical molecular dynamics simulations.

We present Hydrogen Dynamics (HYDYN), a method that allows explicit proton transfer in classical force field molecular dynamics simulations at thermodynamic equilibrium. HYDYN reproduces the characteristic properties of the excess proton in water, from the special pair dance, to the continuous fluctuation between the limiting Eigen and Zundel complexes, and the water reorientation beyond the first solvation layer. Advantages of HYDYN with respect to existing methods are computational efficiency, microscopic reversibility, and easy parameterization for any force field peerReviewed

research product